hypre/lapack/dorgbr.c
falgout e3181f26b1 Added 64 bit feature using HYPRE_Int (see tracker [issue489] for details).
Changed MPI routines to hypre_MPI routines.
Added hypre_printf, etc. routines.
Added AUTOTEST tests to look for 'int' and 'MPI_' calls.
Added a new approach for the Fortran interface (not implemented everywhere yet).
2010-12-20 19:27:44 +00:00

281 lines
8.0 KiB
C

#include "hypre_lapack.h"
#include "f2c.h"
/* Subroutine */ HYPRE_Int dorgbr_(char *vect, integer *m, integer *n, integer *k,
doublereal *a, integer *lda, doublereal *tau, doublereal *work,
integer *lwork, integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Purpose
=======
DORGBR generates one of the real orthogonal matrices Q or P**T
determined by DGEBRD when reducing a real matrix A to bidiagonal
form: A = Q * B * P**T. Q and P**T are defined as products of
elementary reflectors H(i) or G(i) respectively.
If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
is of order M:
if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n
columns of Q, where m >= n >= k;
if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an
M-by-M matrix.
If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
is of order N:
if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m
rows of P**T, where n >= m >= k;
if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as
an N-by-N matrix.
Arguments
=========
VECT (input) CHARACTER*1
Specifies whether the matrix Q or the matrix P**T is
required, as defined in the transformation applied by DGEBRD:
= 'Q': generate Q;
= 'P': generate P**T.
M (input) INTEGER
The number of rows of the matrix Q or P**T to be returned.
M >= 0.
N (input) INTEGER
The number of columns of the matrix Q or P**T to be returned.
N >= 0.
If VECT = 'Q', M >= N >= min(M,K);
if VECT = 'P', N >= M >= min(N,K).
K (input) INTEGER
If VECT = 'Q', the number of columns in the original M-by-K
matrix reduced by DGEBRD.
If VECT = 'P', the number of rows in the original K-by-N
matrix reduced by DGEBRD.
K >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by DGEBRD.
On exit, the M-by-N matrix Q or P**T.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
TAU (input) DOUBLE PRECISION array, dimension
(min(M,K)) if VECT = 'Q'
(min(N,K)) if VECT = 'P'
TAU(i) must contain the scalar factor of the elementary
reflector H(i) or G(i), which determines Q or P**T, as
returned by DGEBRD in its array argument TAUQ or TAUP.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,min(M,N)).
For optimum performance LWORK >= min(M,N)*NB, where NB
is the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
Test the input arguments
Parameter adjustments */
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
static integer i__, j;
extern logical lsame_(char *, char *);
static integer iinfo;
static logical wantq;
static integer nb, mn;
extern /* Subroutine */ HYPRE_Int xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ HYPRE_Int dorglq_(integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
integer *), dorgqr_(integer *, integer *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, integer *);
static integer lwkopt;
static logical lquery;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
wantq = lsame_(vect, "Q");
mn = min(*m,*n);
lquery = *lwork == -1;
if (! wantq && ! lsame_(vect, "P")) {
*info = -1;
} else if (*m < 0) {
*info = -2;
} else if (*n < 0 || ((wantq) && (*n > *m || *n < min(*m,*k))) ||
((! wantq) && (*m > *n || *m < min(*n,*k)))) {
*info = -3;
} else if (*k < 0) {
*info = -4;
} else if (*lda < max(1,*m)) {
*info = -6;
} else if (*lwork < max(1,mn) && ! lquery) {
*info = -9;
}
if (*info == 0) {
if (wantq) {
nb = ilaenv_(&c__1, "DORGQR", " ", m, n, k, &c_n1, (ftnlen)6, (
ftnlen)1);
} else {
nb = ilaenv_(&c__1, "DORGLQ", " ", m, n, k, &c_n1, (ftnlen)6, (
ftnlen)1);
}
lwkopt = max(1,mn) * nb;
work[1] = (doublereal) lwkopt;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DORGBR", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0) {
work[1] = 1.;
return 0;
}
if (wantq) {
/* Form Q, determined by a call to DGEBRD to reduce an m-by-k
matrix */
if (*m >= *k) {
/* If m >= k, assume m >= n >= k */
dorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
iinfo);
} else {
/* If m < k, assume m = n
Shift the vectors which define the elementary reflectors one
column to the right, and set the first row and column of Q
to those of the unit matrix */
for (j = *m; j >= 2; --j) {
a_ref(1, j) = 0.;
i__1 = *m;
for (i__ = j + 1; i__ <= i__1; ++i__) {
a_ref(i__, j) = a_ref(i__, j - 1);
/* L10: */
}
/* L20: */
}
a_ref(1, 1) = 1.;
i__1 = *m;
for (i__ = 2; i__ <= i__1; ++i__) {
a_ref(i__, 1) = 0.;
/* L30: */
}
if (*m > 1) {
/* Form Q(2:m,2:m) */
i__1 = *m - 1;
i__2 = *m - 1;
i__3 = *m - 1;
dorgqr_(&i__1, &i__2, &i__3, &a_ref(2, 2), lda, &tau[1], &
work[1], lwork, &iinfo);
}
}
} else {
/* Form P', determined by a call to DGEBRD to reduce a k-by-n
matrix */
if (*k < *n) {
/* If k < n, assume k <= m <= n */
dorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
iinfo);
} else {
/* If k >= n, assume m = n
Shift the vectors which define the elementary reflectors one
row downward, and set the first row and column of P' to
those of the unit matrix */
a_ref(1, 1) = 1.;
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
a_ref(i__, 1) = 0.;
/* L40: */
}
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
for (i__ = j - 1; i__ >= 2; --i__) {
a_ref(i__, j) = a_ref(i__ - 1, j);
/* L50: */
}
a_ref(1, j) = 0.;
/* L60: */
}
if (*n > 1) {
/* Form P'(2:n,2:n) */
i__1 = *n - 1;
i__2 = *n - 1;
i__3 = *n - 1;
dorglq_(&i__1, &i__2, &i__3, &a_ref(2, 2), lda, &tau[1], &
work[1], lwork, &iinfo);
}
}
}
work[1] = (doublereal) lwkopt;
return 0;
/* End of DORGBR */
} /* dorgbr_ */
#undef a_ref