hypre/lapack/dorgtr.c
falgout e3181f26b1 Added 64 bit feature using HYPRE_Int (see tracker [issue489] for details).
Changed MPI routines to hypre_MPI routines.
Added hypre_printf, etc. routines.
Added AUTOTEST tests to look for 'int' and 'MPI_' calls.
Added a new approach for the Fortran interface (not implemented everywhere yet).
2010-12-20 19:27:44 +00:00

232 lines
6.2 KiB
C

#include "hypre_lapack.h"
#include "f2c.h"
/* Subroutine */ HYPRE_Int dorgtr_(char *uplo, integer *n, doublereal *a, integer *
lda, doublereal *tau, doublereal *work, integer *lwork, integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Purpose
=======
DORGTR generates a real orthogonal matrix Q which is defined as the
product of n-1 elementary reflectors of order N, as returned by
DSYTRD:
if UPLO = 'U', Q = H(n-1) . . . H(2) H(1),
if UPLO = 'L', Q = H(1) H(2) . . . H(n-1).
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A contains elementary reflectors
from DSYTRD;
= 'L': Lower triangle of A contains elementary reflectors
from DSYTRD.
N (input) INTEGER
The order of the matrix Q. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the vectors which define the elementary reflectors,
as returned by DSYTRD.
On exit, the N-by-N orthogonal matrix Q.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (N-1)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DSYTRD.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,N-1).
For optimum performance LWORK >= (N-1)*NB, where NB is
the optimal blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
Test the input arguments
Parameter adjustments */
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
static integer i__, j;
extern logical lsame_(char *, char *);
static integer iinfo;
static logical upper;
static integer nb;
extern /* Subroutine */ HYPRE_Int xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ HYPRE_Int dorgql_(integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
integer *), dorgqr_(integer *, integer *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, integer *);
static integer lwkopt;
static logical lquery;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
lquery = *lwork == -1;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *n - 1;
if (*lwork < max(i__1,i__2) && ! lquery) {
*info = -7;
}
}
if (*info == 0) {
if (upper) {
i__1 = *n - 1;
i__2 = *n - 1;
i__3 = *n - 1;
nb = ilaenv_(&c__1, "DORGQL", " ", &i__1, &i__2, &i__3, &c_n1, (
ftnlen)6, (ftnlen)1);
} else {
i__1 = *n - 1;
i__2 = *n - 1;
i__3 = *n - 1;
nb = ilaenv_(&c__1, "DORGQR", " ", &i__1, &i__2, &i__3, &c_n1, (
ftnlen)6, (ftnlen)1);
}
/* Computing MAX */
i__1 = 1, i__2 = *n - 1;
lwkopt = max(i__1,i__2) * nb;
work[1] = (doublereal) lwkopt;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DORGTR", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
work[1] = 1.;
return 0;
}
if (upper) {
/* Q was determined by a call to DSYTRD with UPLO = 'U'
Shift the vectors which define the elementary reflectors one
column to the left, and set the last row and column of Q to
those of the unit matrix */
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
a_ref(i__, j) = a_ref(i__, j + 1);
/* L10: */
}
a_ref(*n, j) = 0.;
/* L20: */
}
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
a_ref(i__, *n) = 0.;
/* L30: */
}
a_ref(*n, *n) = 1.;
/* Generate Q(1:n-1,1:n-1) */
i__1 = *n - 1;
i__2 = *n - 1;
i__3 = *n - 1;
dorgql_(&i__1, &i__2, &i__3, &a[a_offset], lda, &tau[1], &work[1],
lwork, &iinfo);
} else {
/* Q was determined by a call to DSYTRD with UPLO = 'L'.
Shift the vectors which define the elementary reflectors one
column to the right, and set the first row and column of Q to
those of the unit matrix */
for (j = *n; j >= 2; --j) {
a_ref(1, j) = 0.;
i__1 = *n;
for (i__ = j + 1; i__ <= i__1; ++i__) {
a_ref(i__, j) = a_ref(i__, j - 1);
/* L40: */
}
/* L50: */
}
a_ref(1, 1) = 1.;
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
a_ref(i__, 1) = 0.;
/* L60: */
}
if (*n > 1) {
/* Generate Q(2:n,2:n) */
i__1 = *n - 1;
i__2 = *n - 1;
i__3 = *n - 1;
dorgqr_(&i__1, &i__2, &i__3, &a_ref(2, 2), lda, &tau[1], &work[1],
lwork, &iinfo);
}
}
work[1] = (doublereal) lwkopt;
return 0;
/* End of DORGTR */
} /* dorgtr_ */
#undef a_ref