Changed MPI routines to hypre_MPI routines. Added hypre_printf, etc. routines. Added AUTOTEST tests to look for 'int' and 'MPI_' calls. Added a new approach for the Fortran interface (not implemented everywhere yet).
345 lines
10 KiB
C
345 lines
10 KiB
C
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ HYPRE_Int dormbr_(char *vect, char *side, char *trans, integer *m,
|
|
integer *n, integer *k, doublereal *a, integer *lda, doublereal *tau,
|
|
doublereal *c__, integer *ldc, doublereal *work, integer *lwork,
|
|
integer *info)
|
|
{
|
|
/* -- LAPACK routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
June 30, 1999
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C
|
|
with
|
|
SIDE = 'L' SIDE = 'R'
|
|
TRANS = 'N': Q * C C * Q
|
|
TRANS = 'T': Q**T * C C * Q**T
|
|
|
|
If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C
|
|
with
|
|
SIDE = 'L' SIDE = 'R'
|
|
TRANS = 'N': P * C C * P
|
|
TRANS = 'T': P**T * C C * P**T
|
|
|
|
Here Q and P**T are the orthogonal matrices determined by DGEBRD when
|
|
reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
|
|
P**T are defined as products of elementary reflectors H(i) and G(i)
|
|
respectively.
|
|
|
|
Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
|
|
order of the orthogonal matrix Q or P**T that is applied.
|
|
|
|
If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
|
|
if nq >= k, Q = H(1) H(2) . . . H(k);
|
|
if nq < k, Q = H(1) H(2) . . . H(nq-1).
|
|
|
|
If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
|
|
if k < nq, P = G(1) G(2) . . . G(k);
|
|
if k >= nq, P = G(1) G(2) . . . G(nq-1).
|
|
|
|
Arguments
|
|
=========
|
|
|
|
VECT (input) CHARACTER*1
|
|
= 'Q': apply Q or Q**T;
|
|
= 'P': apply P or P**T.
|
|
|
|
SIDE (input) CHARACTER*1
|
|
= 'L': apply Q, Q**T, P or P**T from the Left;
|
|
= 'R': apply Q, Q**T, P or P**T from the Right.
|
|
|
|
TRANS (input) CHARACTER*1
|
|
= 'N': No transpose, apply Q or P;
|
|
= 'T': Transpose, apply Q**T or P**T.
|
|
|
|
M (input) INTEGER
|
|
The number of rows of the matrix C. M >= 0.
|
|
|
|
N (input) INTEGER
|
|
The number of columns of the matrix C. N >= 0.
|
|
|
|
K (input) INTEGER
|
|
If VECT = 'Q', the number of columns in the original
|
|
matrix reduced by DGEBRD.
|
|
If VECT = 'P', the number of rows in the original
|
|
matrix reduced by DGEBRD.
|
|
K >= 0.
|
|
|
|
A (input) DOUBLE PRECISION array, dimension
|
|
(LDA,min(nq,K)) if VECT = 'Q'
|
|
(LDA,nq) if VECT = 'P'
|
|
The vectors which define the elementary reflectors H(i) and
|
|
G(i), whose products determine the matrices Q and P, as
|
|
returned by DGEBRD.
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A.
|
|
If VECT = 'Q', LDA >= max(1,nq);
|
|
if VECT = 'P', LDA >= max(1,min(nq,K)).
|
|
|
|
TAU (input) DOUBLE PRECISION array, dimension (min(nq,K))
|
|
TAU(i) must contain the scalar factor of the elementary
|
|
reflector H(i) or G(i) which determines Q or P, as returned
|
|
by DGEBRD in the array argument TAUQ or TAUP.
|
|
|
|
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
|
On entry, the M-by-N matrix C.
|
|
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
|
|
or P*C or P**T*C or C*P or C*P**T.
|
|
|
|
LDC (input) INTEGER
|
|
The leading dimension of the array C. LDC >= max(1,M).
|
|
|
|
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
|
|
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
|
|
LWORK (input) INTEGER
|
|
The dimension of the array WORK.
|
|
If SIDE = 'L', LWORK >= max(1,N);
|
|
if SIDE = 'R', LWORK >= max(1,M).
|
|
For optimum performance LWORK >= N*NB if SIDE = 'L', and
|
|
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
|
|
blocksize.
|
|
|
|
If LWORK = -1, then a workspace query is assumed; the routine
|
|
only calculates the optimal size of the WORK array, returns
|
|
this value as the first entry of the WORK array, and no error
|
|
message related to LWORK is issued by XERBLA.
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit
|
|
< 0: if INFO = -i, the i-th argument had an illegal value
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input arguments
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static integer c__2 = 2;
|
|
|
|
/* System generated locals */
|
|
address a__1[2];
|
|
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2];
|
|
char ch__1[2];
|
|
/* Builtin functions
|
|
Subroutine */ HYPRE_Int s_cat(char *, char **, integer *, integer *, ftnlen);
|
|
/* Local variables */
|
|
static logical left;
|
|
extern logical lsame_(char *, char *);
|
|
static integer iinfo, i1, i2, nb, mi, ni, nq, nw;
|
|
extern /* Subroutine */ HYPRE_Int xerbla_(char *, integer *);
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
extern /* Subroutine */ HYPRE_Int dormlq_(char *, char *, integer *, integer *,
|
|
integer *, doublereal *, integer *, doublereal *, doublereal *,
|
|
integer *, doublereal *, integer *, integer *);
|
|
static logical notran;
|
|
extern /* Subroutine */ HYPRE_Int dormqr_(char *, char *, integer *, integer *,
|
|
integer *, doublereal *, integer *, doublereal *, doublereal *,
|
|
integer *, doublereal *, integer *, integer *);
|
|
static logical applyq;
|
|
static char transt[1];
|
|
static integer lwkopt;
|
|
static logical lquery;
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--tau;
|
|
c_dim1 = *ldc;
|
|
c_offset = 1 + c_dim1 * 1;
|
|
c__ -= c_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
applyq = lsame_(vect, "Q");
|
|
left = lsame_(side, "L");
|
|
notran = lsame_(trans, "N");
|
|
lquery = *lwork == -1;
|
|
|
|
/* NQ is the order of Q or P and NW is the minimum dimension of WORK */
|
|
|
|
if (left) {
|
|
nq = *m;
|
|
nw = *n;
|
|
} else {
|
|
nq = *n;
|
|
nw = *m;
|
|
}
|
|
if (! applyq && ! lsame_(vect, "P")) {
|
|
*info = -1;
|
|
} else if (! left && ! lsame_(side, "R")) {
|
|
*info = -2;
|
|
} else if (! notran && ! lsame_(trans, "T")) {
|
|
*info = -3;
|
|
} else if (*m < 0) {
|
|
*info = -4;
|
|
} else if (*n < 0) {
|
|
*info = -5;
|
|
} else if (*k < 0) {
|
|
*info = -6;
|
|
} else /* if(complicated condition) */ {
|
|
/* Computing MAX */
|
|
i__1 = 1, i__2 = min(nq,*k);
|
|
if (((applyq) && (*lda < max(1,nq))) ||
|
|
((! applyq) && (*lda < max(i__1,i__2)))) {
|
|
*info = -8;
|
|
} else if (*ldc < max(1,*m)) {
|
|
*info = -11;
|
|
} else if (*lwork < max(1,nw) && ! lquery) {
|
|
*info = -13;
|
|
}
|
|
}
|
|
|
|
if (*info == 0) {
|
|
if (applyq) {
|
|
if (left) {
|
|
/* Writing concatenation */
|
|
i__3[0] = 1, a__1[0] = side;
|
|
i__3[1] = 1, a__1[1] = trans;
|
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
|
|
i__1 = *m - 1;
|
|
i__2 = *m - 1;
|
|
nb = ilaenv_(&c__1, "DORMQR", ch__1, &i__1, n, &i__2, &c_n1, (
|
|
ftnlen)6, (ftnlen)2);
|
|
} else {
|
|
/* Writing concatenation */
|
|
i__3[0] = 1, a__1[0] = side;
|
|
i__3[1] = 1, a__1[1] = trans;
|
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
|
|
i__1 = *n - 1;
|
|
i__2 = *n - 1;
|
|
nb = ilaenv_(&c__1, "DORMQR", ch__1, m, &i__1, &i__2, &c_n1, (
|
|
ftnlen)6, (ftnlen)2);
|
|
}
|
|
} else {
|
|
if (left) {
|
|
/* Writing concatenation */
|
|
i__3[0] = 1, a__1[0] = side;
|
|
i__3[1] = 1, a__1[1] = trans;
|
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
|
|
i__1 = *m - 1;
|
|
i__2 = *m - 1;
|
|
nb = ilaenv_(&c__1, "DORMLQ", ch__1, &i__1, n, &i__2, &c_n1, (
|
|
ftnlen)6, (ftnlen)2);
|
|
} else {
|
|
/* Writing concatenation */
|
|
i__3[0] = 1, a__1[0] = side;
|
|
i__3[1] = 1, a__1[1] = trans;
|
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
|
|
i__1 = *n - 1;
|
|
i__2 = *n - 1;
|
|
nb = ilaenv_(&c__1, "DORMLQ", ch__1, m, &i__1, &i__2, &c_n1, (
|
|
ftnlen)6, (ftnlen)2);
|
|
}
|
|
}
|
|
lwkopt = max(1,nw) * nb;
|
|
work[1] = (doublereal) lwkopt;
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DORMBR", &i__1);
|
|
return 0;
|
|
} else if (lquery) {
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
work[1] = 1.;
|
|
if (*m == 0 || *n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (applyq) {
|
|
|
|
/* Apply Q */
|
|
|
|
if (nq >= *k) {
|
|
|
|
/* Q was determined by a call to DGEBRD with nq >= k */
|
|
|
|
dormqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
|
|
c_offset], ldc, &work[1], lwork, &iinfo);
|
|
} else if (nq > 1) {
|
|
|
|
/* Q was determined by a call to DGEBRD with nq < k */
|
|
|
|
if (left) {
|
|
mi = *m - 1;
|
|
ni = *n;
|
|
i1 = 2;
|
|
i2 = 1;
|
|
} else {
|
|
mi = *m;
|
|
ni = *n - 1;
|
|
i1 = 1;
|
|
i2 = 2;
|
|
}
|
|
i__1 = nq - 1;
|
|
dormqr_(side, trans, &mi, &ni, &i__1, &a_ref(2, 1), lda, &tau[1],
|
|
&c___ref(i1, i2), ldc, &work[1], lwork, &iinfo);
|
|
}
|
|
} else {
|
|
|
|
/* Apply P */
|
|
|
|
if (notran) {
|
|
*(unsigned char *)transt = 'T';
|
|
} else {
|
|
*(unsigned char *)transt = 'N';
|
|
}
|
|
if (nq > *k) {
|
|
|
|
/* P was determined by a call to DGEBRD with nq > k */
|
|
|
|
dormlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[
|
|
c_offset], ldc, &work[1], lwork, &iinfo);
|
|
} else if (nq > 1) {
|
|
|
|
/* P was determined by a call to DGEBRD with nq <= k */
|
|
|
|
if (left) {
|
|
mi = *m - 1;
|
|
ni = *n;
|
|
i1 = 2;
|
|
i2 = 1;
|
|
} else {
|
|
mi = *m;
|
|
ni = *n - 1;
|
|
i1 = 1;
|
|
i2 = 2;
|
|
}
|
|
i__1 = nq - 1;
|
|
dormlq_(side, transt, &mi, &ni, &i__1, &a_ref(1, 2), lda, &tau[1],
|
|
&c___ref(i1, i2), ldc, &work[1], lwork, &iinfo);
|
|
}
|
|
}
|
|
work[1] = (doublereal) lwkopt;
|
|
return 0;
|
|
|
|
/* End of DORMBR */
|
|
|
|
} /* dormbr_ */
|
|
|
|
#undef c___ref
|
|
#undef a_ref
|
|
|
|
|