Changed MPI routines to hypre_MPI routines. Added hypre_printf, etc. routines. Added AUTOTEST tests to look for 'int' and 'MPI_' calls. Added a new approach for the Fortran interface (not implemented everywhere yet).
257 lines
8.5 KiB
C
257 lines
8.5 KiB
C
#include "../blas/hypre_blas.h"
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ HYPRE_Int dsygv_(integer *itype, char *jobz, char *uplo, integer *
|
|
n, doublereal *a, integer *lda, doublereal *b, integer *ldb,
|
|
doublereal *w, doublereal *work, integer *lwork, integer *info)
|
|
{
|
|
/* -- LAPACK driver routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
June 30, 1999
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DSYGV computes all the eigenvalues, and optionally, the eigenvectors
|
|
of a real generalized symmetric-definite eigenproblem, of the form
|
|
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
|
|
Here A and B are assumed to be symmetric and B is also
|
|
positive definite.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
ITYPE (input) INTEGER
|
|
Specifies the problem type to be solved:
|
|
= 1: A*x = (lambda)*B*x
|
|
= 2: A*B*x = (lambda)*x
|
|
= 3: B*A*x = (lambda)*x
|
|
|
|
JOBZ (input) CHARACTER*1
|
|
= 'N': Compute eigenvalues only;
|
|
= 'V': Compute eigenvalues and eigenvectors.
|
|
|
|
UPLO (input) CHARACTER*1
|
|
= 'U': Upper triangles of A and B are stored;
|
|
= 'L': Lower triangles of A and B are stored.
|
|
|
|
N (input) INTEGER
|
|
The order of the matrices A and B. N >= 0.
|
|
|
|
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
|
|
On entry, the symmetric matrix A. If UPLO = 'U', the
|
|
leading N-by-N upper triangular part of A contains the
|
|
upper triangular part of the matrix A. If UPLO = 'L',
|
|
the leading N-by-N lower triangular part of A contains
|
|
the lower triangular part of the matrix A.
|
|
|
|
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
|
|
matrix Z of eigenvectors. The eigenvectors are normalized
|
|
as follows:
|
|
if ITYPE = 1 or 2, Z**T*B*Z = I;
|
|
if ITYPE = 3, Z**T*inv(B)*Z = I.
|
|
If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
|
|
or the lower triangle (if UPLO='L') of A, including the
|
|
diagonal, is destroyed.
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A. LDA >= max(1,N).
|
|
|
|
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
|
|
On entry, the symmetric positive definite matrix B.
|
|
If UPLO = 'U', the leading N-by-N upper triangular part of B
|
|
contains the upper triangular part of the matrix B.
|
|
If UPLO = 'L', the leading N-by-N lower triangular part of B
|
|
contains the lower triangular part of the matrix B.
|
|
|
|
On exit, if INFO <= N, the part of B containing the matrix is
|
|
overwritten by the triangular factor U or L from the Cholesky
|
|
factorization B = U**T*U or B = L*L**T.
|
|
|
|
LDB (input) INTEGER
|
|
The leading dimension of the array B. LDB >= max(1,N).
|
|
|
|
W (output) DOUBLE PRECISION array, dimension (N)
|
|
If INFO = 0, the eigenvalues in ascending order.
|
|
|
|
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
|
|
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
|
|
|
|
LWORK (input) INTEGER
|
|
The length of the array WORK. LWORK >= max(1,3*N-1).
|
|
For optimal efficiency, LWORK >= (NB+2)*N,
|
|
where NB is the blocksize for DSYTRD returned by ILAENV.
|
|
|
|
If LWORK = -1, then a workspace query is assumed; the routine
|
|
only calculates the optimal size of the WORK array, returns
|
|
this value as the first entry of the WORK array, and no error
|
|
message related to LWORK is issued by XERBLA.
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit
|
|
< 0: if INFO = -i, the i-th argument had an illegal value
|
|
> 0: DPOTRF or DSYEV returned an error code:
|
|
<= N: if INFO = i, DSYEV failed to converge;
|
|
i off-diagonal elements of an intermediate
|
|
tridiagonal form did not converge to zero;
|
|
> N: if INFO = N + i, for 1 <= i <= N, then the leading
|
|
minor of order i of B is not positive definite.
|
|
The factorization of B could not be completed and
|
|
no eigenvalues or eigenvectors were computed.
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input parameters.
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static integer c__1 = 1;
|
|
static integer c_n1 = -1;
|
|
static doublereal c_b16 = 1.;
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
|
|
/* Local variables */
|
|
static integer neig;
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ HYPRE_Int dtrmm_(char *, char *, char *, char *,
|
|
integer *, integer *, doublereal *, doublereal *, integer *,
|
|
doublereal *, integer *);
|
|
static char trans[1];
|
|
extern /* Subroutine */ HYPRE_Int dtrsm_(char *, char *, char *, char *,
|
|
integer *, integer *, doublereal *, doublereal *, integer *,
|
|
doublereal *, integer *);
|
|
static logical upper;
|
|
extern /* Subroutine */ HYPRE_Int dsyev_(char *, char *, integer *, doublereal *
|
|
, integer *, doublereal *, doublereal *, integer *, integer *);
|
|
static logical wantz;
|
|
static integer nb;
|
|
extern /* Subroutine */ HYPRE_Int xerbla_(char *, integer *);
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
integer *, integer *, ftnlen, ftnlen);
|
|
extern /* Subroutine */ HYPRE_Int dpotrf_(char *, integer *, doublereal *,
|
|
integer *, integer *), dsygst_(integer *, char *, integer
|
|
*, doublereal *, integer *, doublereal *, integer *, integer *);
|
|
static integer lwkopt;
|
|
static logical lquery;
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1 * 1;
|
|
b -= b_offset;
|
|
--w;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
wantz = lsame_(jobz, "V");
|
|
upper = lsame_(uplo, "U");
|
|
lquery = *lwork == -1;
|
|
|
|
*info = 0;
|
|
if (*itype < 1 || *itype > 3) {
|
|
*info = -1;
|
|
} else if (! (wantz || lsame_(jobz, "N"))) {
|
|
*info = -2;
|
|
} else if (! (upper || lsame_(uplo, "L"))) {
|
|
*info = -3;
|
|
} else if (*n < 0) {
|
|
*info = -4;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -6;
|
|
} else if (*ldb < max(1,*n)) {
|
|
*info = -8;
|
|
} else /* if(complicated condition) */ {
|
|
/* Computing MAX */
|
|
i__1 = 1, i__2 = *n * 3 - 1;
|
|
if (*lwork < max(i__1,i__2) && ! lquery) {
|
|
*info = -11;
|
|
}
|
|
}
|
|
|
|
if (*info == 0) {
|
|
nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
|
|
(ftnlen)1);
|
|
lwkopt = (nb + 2) * *n;
|
|
work[1] = (doublereal) lwkopt;
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DSYGV ", &i__1);
|
|
return 0;
|
|
} else if (lquery) {
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Form a Cholesky factorization of B. */
|
|
|
|
dpotrf_(uplo, n, &b[b_offset], ldb, info);
|
|
if (*info != 0) {
|
|
*info = *n + *info;
|
|
return 0;
|
|
}
|
|
|
|
/* Transform problem to standard eigenvalue problem and solve. */
|
|
|
|
dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
|
|
dsyev_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, info);
|
|
|
|
if (wantz) {
|
|
|
|
/* Backtransform eigenvectors to the original problem. */
|
|
|
|
neig = *n;
|
|
if (*info > 0) {
|
|
neig = *info - 1;
|
|
}
|
|
if (*itype == 1 || *itype == 2) {
|
|
|
|
/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
|
|
backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
|
|
|
|
if (upper) {
|
|
*(unsigned char *)trans = 'N';
|
|
} else {
|
|
*(unsigned char *)trans = 'T';
|
|
}
|
|
|
|
dtrsm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[
|
|
b_offset], ldb, &a[a_offset], lda);
|
|
|
|
} else if (*itype == 3) {
|
|
|
|
/* For B*A*x=(lambda)*x;
|
|
backtransform eigenvectors: x = L*y or U'*y */
|
|
|
|
if (upper) {
|
|
*(unsigned char *)trans = 'T';
|
|
} else {
|
|
*(unsigned char *)trans = 'N';
|
|
}
|
|
|
|
dtrmm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[
|
|
b_offset], ldb, &a[a_offset], lda);
|
|
}
|
|
}
|
|
|
|
work[1] = (doublereal) lwkopt;
|
|
return 0;
|
|
|
|
/* End of DSYGV */
|
|
|
|
} /* dsygv_ */
|
|
|