hypre/lapack/dsygv.c
falgout e3181f26b1 Added 64 bit feature using HYPRE_Int (see tracker [issue489] for details).
Changed MPI routines to hypre_MPI routines.
Added hypre_printf, etc. routines.
Added AUTOTEST tests to look for 'int' and 'MPI_' calls.
Added a new approach for the Fortran interface (not implemented everywhere yet).
2010-12-20 19:27:44 +00:00

257 lines
8.5 KiB
C

#include "../blas/hypre_blas.h"
#include "hypre_lapack.h"
#include "f2c.h"
/* Subroutine */ HYPRE_Int dsygv_(integer *itype, char *jobz, char *uplo, integer *
n, doublereal *a, integer *lda, doublereal *b, integer *ldb,
doublereal *w, doublereal *work, integer *lwork, integer *info)
{
/* -- LAPACK driver routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Purpose
=======
DSYGV computes all the eigenvalues, and optionally, the eigenvectors
of a real generalized symmetric-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
Here A and B are assumed to be symmetric and B is also
positive definite.
Arguments
=========
ITYPE (input) INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N (input) INTEGER
The order of the matrices A and B. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
matrix Z of eigenvectors. The eigenvectors are normalized
as follows:
if ITYPE = 1 or 2, Z**T*B*Z = I;
if ITYPE = 3, Z**T*inv(B)*Z = I.
If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
or the lower triangle (if UPLO='L') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the symmetric positive definite matrix B.
If UPLO = 'U', the leading N-by-N upper triangular part of B
contains the upper triangular part of the matrix B.
If UPLO = 'L', the leading N-by-N lower triangular part of B
contains the lower triangular part of the matrix B.
On exit, if INFO <= N, the part of B containing the matrix is
overwritten by the triangular factor U or L from the Cholesky
factorization B = U**T*U or B = L*L**T.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,3*N-1).
For optimal efficiency, LWORK >= (NB+2)*N,
where NB is the blocksize for DSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: DPOTRF or DSYEV returned an error code:
<= N: if INFO = i, DSYEV failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero;
> N: if INFO = N + i, for 1 <= i <= N, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
=====================================================================
Test the input parameters.
Parameter adjustments */
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static doublereal c_b16 = 1.;
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
/* Local variables */
static integer neig;
extern logical lsame_(char *, char *);
extern /* Subroutine */ HYPRE_Int dtrmm_(char *, char *, char *, char *,
integer *, integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *);
static char trans[1];
extern /* Subroutine */ HYPRE_Int dtrsm_(char *, char *, char *, char *,
integer *, integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *);
static logical upper;
extern /* Subroutine */ HYPRE_Int dsyev_(char *, char *, integer *, doublereal *
, integer *, doublereal *, doublereal *, integer *, integer *);
static logical wantz;
static integer nb;
extern /* Subroutine */ HYPRE_Int xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ HYPRE_Int dpotrf_(char *, integer *, doublereal *,
integer *, integer *), dsygst_(integer *, char *, integer
*, doublereal *, integer *, doublereal *, integer *, integer *);
static integer lwkopt;
static logical lquery;
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--w;
--work;
/* Function Body */
wantz = lsame_(jobz, "V");
upper = lsame_(uplo, "U");
lquery = *lwork == -1;
*info = 0;
if (*itype < 1 || *itype > 3) {
*info = -1;
} else if (! (wantz || lsame_(jobz, "N"))) {
*info = -2;
} else if (! (upper || lsame_(uplo, "L"))) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*lda < max(1,*n)) {
*info = -6;
} else if (*ldb < max(1,*n)) {
*info = -8;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *n * 3 - 1;
if (*lwork < max(i__1,i__2) && ! lquery) {
*info = -11;
}
}
if (*info == 0) {
nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
(ftnlen)1);
lwkopt = (nb + 2) * *n;
work[1] = (doublereal) lwkopt;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DSYGV ", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Form a Cholesky factorization of B. */
dpotrf_(uplo, n, &b[b_offset], ldb, info);
if (*info != 0) {
*info = *n + *info;
return 0;
}
/* Transform problem to standard eigenvalue problem and solve. */
dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info);
dsyev_(jobz, uplo, n, &a[a_offset], lda, &w[1], &work[1], lwork, info);
if (wantz) {
/* Backtransform eigenvectors to the original problem. */
neig = *n;
if (*info > 0) {
neig = *info - 1;
}
if (*itype == 1 || *itype == 2) {
/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
if (upper) {
*(unsigned char *)trans = 'N';
} else {
*(unsigned char *)trans = 'T';
}
dtrsm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[
b_offset], ldb, &a[a_offset], lda);
} else if (*itype == 3) {
/* For B*A*x=(lambda)*x;
backtransform eigenvectors: x = L*y or U'*y */
if (upper) {
*(unsigned char *)trans = 'T';
} else {
*(unsigned char *)trans = 'N';
}
dtrmm_("Left", uplo, trans, "Non-unit", n, &neig, &c_b16, &b[
b_offset], ldb, &a[a_offset], lda);
}
}
work[1] = (doublereal) lwkopt;
return 0;
/* End of DSYGV */
} /* dsygv_ */