hypre/lapack/dsytd2.c

283 lines
8.6 KiB
C

#include "hypre_lapack.h"
#include "f2c.h"
/* Subroutine */ int dsytd2_(char *uplo, integer *n, doublereal *a, integer *
lda, doublereal *d__, doublereal *e, doublereal *tau, integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
form T by an orthogonal similarity transformation: Q' * A * Q = T.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the orthogonal
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the orthogonal matrix Q as a product
of elementary reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
D (output) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
E (output) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
TAU (output) DOUBLE PRECISION array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
Q = H(n-1) . . . H(2) H(1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
A(1:i-1,i+1), and tau in TAU(i).
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
Q = H(1) H(2) . . . H(n-1).
Each H(i) has the form
H(i) = I - tau * v * v'
where tau is a real scalar, and v is a real vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
and tau in TAU(i).
The contents of A on exit are illustrated by the following examples
with n = 5:
if UPLO = 'U': if UPLO = 'L':
( d e v2 v3 v4 ) ( d )
( d e v3 v4 ) ( e d )
( d e v4 ) ( v1 e d )
( d e ) ( v1 v2 e d )
( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
=====================================================================
Test the input parameters
Parameter adjustments */
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b8 = 0.;
static doublereal c_b14 = -1.;
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
/* Local variables */
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
static doublereal taui;
extern /* Subroutine */ int dsyr2_(char *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *);
static integer i__;
static doublereal alpha;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *);
static logical upper;
extern /* Subroutine */ int dsymv_(char *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *), dlarfg_(integer *, doublereal *,
doublereal *, integer *, doublereal *), xerbla_(char *, integer *
);
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--d__;
--e;
--tau;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DSYTD2", &i__1);
return 0;
}
/* Quick return if possible */
if (*n <= 0) {
return 0;
}
if (upper) {
/* Reduce the upper triangle of A */
for (i__ = *n - 1; i__ >= 1; --i__) {
/* Generate elementary reflector H(i) = I - tau * v * v'
to annihilate A(1:i-1,i+1) */
dlarfg_(&i__, &a_ref(i__, i__ + 1), &a_ref(1, i__ + 1), &c__1, &
taui);
e[i__] = a_ref(i__, i__ + 1);
if (taui != 0.) {
/* Apply H(i) from both sides to A(1:i,1:i) */
a_ref(i__, i__ + 1) = 1.;
/* Compute x := tau * A * v storing x in TAU(1:i) */
dsymv_(uplo, &i__, &taui, &a[a_offset], lda, &a_ref(1, i__ +
1), &c__1, &c_b8, &tau[1], &c__1);
/* Compute w := x - 1/2 * tau * (x'*v) * v */
alpha = taui * -.5 * ddot_(&i__, &tau[1], &c__1, &a_ref(1,
i__ + 1), &c__1);
daxpy_(&i__, &alpha, &a_ref(1, i__ + 1), &c__1, &tau[1], &
c__1);
/* Apply the transformation as a rank-2 update:
A := A - v * w' - w * v' */
dsyr2_(uplo, &i__, &c_b14, &a_ref(1, i__ + 1), &c__1, &tau[1],
&c__1, &a[a_offset], lda);
a_ref(i__, i__ + 1) = e[i__];
}
d__[i__ + 1] = a_ref(i__ + 1, i__ + 1);
tau[i__] = taui;
/* L10: */
}
d__[1] = a_ref(1, 1);
} else {
/* Reduce the lower triangle of A */
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Generate elementary reflector H(i) = I - tau * v * v'
to annihilate A(i+2:n,i)
Computing MIN */
i__2 = i__ + 2;
i__3 = *n - i__;
dlarfg_(&i__3, &a_ref(i__ + 1, i__), &a_ref(min(i__2,*n), i__), &
c__1, &taui);
e[i__] = a_ref(i__ + 1, i__);
if (taui != 0.) {
/* Apply H(i) from both sides to A(i+1:n,i+1:n) */
a_ref(i__ + 1, i__) = 1.;
/* Compute x := tau * A * v storing y in TAU(i:n-1) */
i__2 = *n - i__;
dsymv_(uplo, &i__2, &taui, &a_ref(i__ + 1, i__ + 1), lda, &
a_ref(i__ + 1, i__), &c__1, &c_b8, &tau[i__], &c__1);
/* Compute w := x - 1/2 * tau * (x'*v) * v */
i__2 = *n - i__;
alpha = taui * -.5 * ddot_(&i__2, &tau[i__], &c__1, &a_ref(
i__ + 1, i__), &c__1);
i__2 = *n - i__;
daxpy_(&i__2, &alpha, &a_ref(i__ + 1, i__), &c__1, &tau[i__],
&c__1);
/* Apply the transformation as a rank-2 update:
A := A - v * w' - w * v' */
i__2 = *n - i__;
dsyr2_(uplo, &i__2, &c_b14, &a_ref(i__ + 1, i__), &c__1, &tau[
i__], &c__1, &a_ref(i__ + 1, i__ + 1), lda)
;
a_ref(i__ + 1, i__) = e[i__];
}
d__[i__] = a_ref(i__, i__);
tau[i__] = taui;
/* L20: */
}
d__[*n] = a_ref(*n, *n);
}
return 0;
/* End of DSYTD2 */
} /* dsytd2_ */
#undef a_ref