283 lines
8.6 KiB
C
283 lines
8.6 KiB
C
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ int dsytd2_(char *uplo, integer *n, doublereal *a, integer *
|
|
lda, doublereal *d__, doublereal *e, doublereal *tau, integer *info)
|
|
{
|
|
/* -- LAPACK routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
October 31, 1992
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
|
|
form T by an orthogonal similarity transformation: Q' * A * Q = T.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
UPLO (input) CHARACTER*1
|
|
Specifies whether the upper or lower triangular part of the
|
|
symmetric matrix A is stored:
|
|
= 'U': Upper triangular
|
|
= 'L': Lower triangular
|
|
|
|
N (input) INTEGER
|
|
The order of the matrix A. N >= 0.
|
|
|
|
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
|
On entry, the symmetric matrix A. If UPLO = 'U', the leading
|
|
n-by-n upper triangular part of A contains the upper
|
|
triangular part of the matrix A, and the strictly lower
|
|
triangular part of A is not referenced. If UPLO = 'L', the
|
|
leading n-by-n lower triangular part of A contains the lower
|
|
triangular part of the matrix A, and the strictly upper
|
|
triangular part of A is not referenced.
|
|
On exit, if UPLO = 'U', the diagonal and first superdiagonal
|
|
of A are overwritten by the corresponding elements of the
|
|
tridiagonal matrix T, and the elements above the first
|
|
superdiagonal, with the array TAU, represent the orthogonal
|
|
matrix Q as a product of elementary reflectors; if UPLO
|
|
= 'L', the diagonal and first subdiagonal of A are over-
|
|
written by the corresponding elements of the tridiagonal
|
|
matrix T, and the elements below the first subdiagonal, with
|
|
the array TAU, represent the orthogonal matrix Q as a product
|
|
of elementary reflectors. See Further Details.
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A. LDA >= max(1,N).
|
|
|
|
D (output) DOUBLE PRECISION array, dimension (N)
|
|
The diagonal elements of the tridiagonal matrix T:
|
|
D(i) = A(i,i).
|
|
|
|
E (output) DOUBLE PRECISION array, dimension (N-1)
|
|
The off-diagonal elements of the tridiagonal matrix T:
|
|
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
|
|
|
|
TAU (output) DOUBLE PRECISION array, dimension (N-1)
|
|
The scalar factors of the elementary reflectors (see Further
|
|
Details).
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit
|
|
< 0: if INFO = -i, the i-th argument had an illegal value.
|
|
|
|
Further Details
|
|
===============
|
|
|
|
If UPLO = 'U', the matrix Q is represented as a product of elementary
|
|
reflectors
|
|
|
|
Q = H(n-1) . . . H(2) H(1).
|
|
|
|
Each H(i) has the form
|
|
|
|
H(i) = I - tau * v * v'
|
|
|
|
where tau is a real scalar, and v is a real vector with
|
|
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
|
|
A(1:i-1,i+1), and tau in TAU(i).
|
|
|
|
If UPLO = 'L', the matrix Q is represented as a product of elementary
|
|
reflectors
|
|
|
|
Q = H(1) H(2) . . . H(n-1).
|
|
|
|
Each H(i) has the form
|
|
|
|
H(i) = I - tau * v * v'
|
|
|
|
where tau is a real scalar, and v is a real vector with
|
|
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
|
|
and tau in TAU(i).
|
|
|
|
The contents of A on exit are illustrated by the following examples
|
|
with n = 5:
|
|
|
|
if UPLO = 'U': if UPLO = 'L':
|
|
|
|
( d e v2 v3 v4 ) ( d )
|
|
( d e v3 v4 ) ( e d )
|
|
( d e v4 ) ( v1 e d )
|
|
( d e ) ( v1 v2 e d )
|
|
( d ) ( v1 v2 v3 e d )
|
|
|
|
where d and e denote diagonal and off-diagonal elements of T, and vi
|
|
denotes an element of the vector defining H(i).
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input parameters
|
|
|
|
Parameter adjustments */
|
|
/* Table of constant values */
|
|
static integer c__1 = 1;
|
|
static doublereal c_b8 = 0.;
|
|
static doublereal c_b14 = -1.;
|
|
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
|
/* Local variables */
|
|
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
|
|
integer *);
|
|
static doublereal taui;
|
|
extern /* Subroutine */ int dsyr2_(char *, integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
integer *);
|
|
static integer i__;
|
|
static doublereal alpha;
|
|
extern logical lsame_(char *, char *);
|
|
extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
|
|
integer *, doublereal *, integer *);
|
|
static logical upper;
|
|
extern /* Subroutine */ int dsymv_(char *, integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
doublereal *, integer *), dlarfg_(integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *), xerbla_(char *, integer *
|
|
);
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--d__;
|
|
--e;
|
|
--tau;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, "U");
|
|
if (! upper && ! lsame_(uplo, "L")) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -4;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DSYTD2", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (upper) {
|
|
|
|
/* Reduce the upper triangle of A */
|
|
|
|
for (i__ = *n - 1; i__ >= 1; --i__) {
|
|
|
|
/* Generate elementary reflector H(i) = I - tau * v * v'
|
|
to annihilate A(1:i-1,i+1) */
|
|
|
|
dlarfg_(&i__, &a_ref(i__, i__ + 1), &a_ref(1, i__ + 1), &c__1, &
|
|
taui);
|
|
e[i__] = a_ref(i__, i__ + 1);
|
|
|
|
if (taui != 0.) {
|
|
|
|
/* Apply H(i) from both sides to A(1:i,1:i) */
|
|
|
|
a_ref(i__, i__ + 1) = 1.;
|
|
|
|
/* Compute x := tau * A * v storing x in TAU(1:i) */
|
|
|
|
dsymv_(uplo, &i__, &taui, &a[a_offset], lda, &a_ref(1, i__ +
|
|
1), &c__1, &c_b8, &tau[1], &c__1);
|
|
|
|
/* Compute w := x - 1/2 * tau * (x'*v) * v */
|
|
|
|
alpha = taui * -.5 * ddot_(&i__, &tau[1], &c__1, &a_ref(1,
|
|
i__ + 1), &c__1);
|
|
daxpy_(&i__, &alpha, &a_ref(1, i__ + 1), &c__1, &tau[1], &
|
|
c__1);
|
|
|
|
/* Apply the transformation as a rank-2 update:
|
|
A := A - v * w' - w * v' */
|
|
|
|
dsyr2_(uplo, &i__, &c_b14, &a_ref(1, i__ + 1), &c__1, &tau[1],
|
|
&c__1, &a[a_offset], lda);
|
|
|
|
a_ref(i__, i__ + 1) = e[i__];
|
|
}
|
|
d__[i__ + 1] = a_ref(i__ + 1, i__ + 1);
|
|
tau[i__] = taui;
|
|
/* L10: */
|
|
}
|
|
d__[1] = a_ref(1, 1);
|
|
} else {
|
|
|
|
/* Reduce the lower triangle of A */
|
|
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* Generate elementary reflector H(i) = I - tau * v * v'
|
|
to annihilate A(i+2:n,i)
|
|
|
|
Computing MIN */
|
|
i__2 = i__ + 2;
|
|
i__3 = *n - i__;
|
|
dlarfg_(&i__3, &a_ref(i__ + 1, i__), &a_ref(min(i__2,*n), i__), &
|
|
c__1, &taui);
|
|
e[i__] = a_ref(i__ + 1, i__);
|
|
|
|
if (taui != 0.) {
|
|
|
|
/* Apply H(i) from both sides to A(i+1:n,i+1:n) */
|
|
|
|
a_ref(i__ + 1, i__) = 1.;
|
|
|
|
/* Compute x := tau * A * v storing y in TAU(i:n-1) */
|
|
|
|
i__2 = *n - i__;
|
|
dsymv_(uplo, &i__2, &taui, &a_ref(i__ + 1, i__ + 1), lda, &
|
|
a_ref(i__ + 1, i__), &c__1, &c_b8, &tau[i__], &c__1);
|
|
|
|
/* Compute w := x - 1/2 * tau * (x'*v) * v */
|
|
|
|
i__2 = *n - i__;
|
|
alpha = taui * -.5 * ddot_(&i__2, &tau[i__], &c__1, &a_ref(
|
|
i__ + 1, i__), &c__1);
|
|
i__2 = *n - i__;
|
|
daxpy_(&i__2, &alpha, &a_ref(i__ + 1, i__), &c__1, &tau[i__],
|
|
&c__1);
|
|
|
|
/* Apply the transformation as a rank-2 update:
|
|
A := A - v * w' - w * v' */
|
|
|
|
i__2 = *n - i__;
|
|
dsyr2_(uplo, &i__2, &c_b14, &a_ref(i__ + 1, i__), &c__1, &tau[
|
|
i__], &c__1, &a_ref(i__ + 1, i__ + 1), lda)
|
|
;
|
|
|
|
a_ref(i__ + 1, i__) = e[i__];
|
|
}
|
|
d__[i__] = a_ref(i__, i__);
|
|
tau[i__] = taui;
|
|
/* L20: */
|
|
}
|
|
d__[*n] = a_ref(*n, *n);
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of DSYTD2 */
|
|
|
|
} /* dsytd2_ */
|
|
|
|
#undef a_ref
|
|
|
|
|