hypre/parcsr_ls/par_difconv.c
falgout 46488e8cbc Added HYPRE_Complex and HYPRE_Real types in place of double.
Added an example code to test CG on a 4D HYPRE_SSTRUCT complex problem.
Added regression tests for bigint, maxdim, and complex.
Added a test to make sure double types are not added to the source.
See [Issue995] in the tracker for more details.
2013-10-11 19:48:06 +00:00

348 lines
9.5 KiB
C

/*BHEADER**********************************************************************
* Copyright (c) 2008, Lawrence Livermore National Security, LLC.
* Produced at the Lawrence Livermore National Laboratory.
* This file is part of HYPRE. See file COPYRIGHT for details.
*
* HYPRE is free software; you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License (as published by the Free
* Software Foundation) version 2.1 dated February 1999.
*
* $Revision$
***********************************************************************EHEADER*/
#include "_hypre_parcsr_ls.h"
/*--------------------------------------------------------------------------
* hypre_GenerateDifConv
*--------------------------------------------------------------------------*/
HYPRE_ParCSRMatrix
GenerateDifConv( MPI_Comm comm,
HYPRE_Int nx,
HYPRE_Int ny,
HYPRE_Int nz,
HYPRE_Int P,
HYPRE_Int Q,
HYPRE_Int R,
HYPRE_Int p,
HYPRE_Int q,
HYPRE_Int r,
HYPRE_Real *value )
{
hypre_ParCSRMatrix *A;
hypre_CSRMatrix *diag;
hypre_CSRMatrix *offd;
HYPRE_Int *diag_i;
HYPRE_Int *diag_j;
HYPRE_Real *diag_data;
HYPRE_Int *offd_i;
HYPRE_Int *offd_j;
HYPRE_Real *offd_data;
HYPRE_Int *global_part;
HYPRE_Int ix, iy, iz;
HYPRE_Int cnt, o_cnt;
HYPRE_Int local_num_rows;
HYPRE_Int *col_map_offd;
HYPRE_Int row_index;
HYPRE_Int i,j;
HYPRE_Int nx_local, ny_local, nz_local;
HYPRE_Int nx_size, ny_size, nz_size;
HYPRE_Int num_cols_offd;
HYPRE_Int grid_size;
HYPRE_Int *nx_part;
HYPRE_Int *ny_part;
HYPRE_Int *nz_part;
HYPRE_Int num_procs, my_id;
HYPRE_Int P_busy, Q_busy, R_busy;
hypre_MPI_Comm_size(comm,&num_procs);
hypre_MPI_Comm_rank(comm,&my_id);
grid_size = nx*ny*nz;
hypre_GeneratePartitioning(nx,P,&nx_part);
hypre_GeneratePartitioning(ny,Q,&ny_part);
hypre_GeneratePartitioning(nz,R,&nz_part);
global_part = hypre_CTAlloc(HYPRE_Int,P*Q*R+1);
global_part[0] = 0;
cnt = 1;
for (iz = 0; iz < R; iz++)
{
nz_size = nz_part[iz+1]-nz_part[iz];
for (iy = 0; iy < Q; iy++)
{
ny_size = ny_part[iy+1]-ny_part[iy];
for (ix = 0; ix < P; ix++)
{
nx_size = nx_part[ix+1] - nx_part[ix];
global_part[cnt] = global_part[cnt-1];
global_part[cnt++] += nx_size*ny_size*nz_size;
}
}
}
nx_local = nx_part[p+1] - nx_part[p];
ny_local = ny_part[q+1] - ny_part[q];
nz_local = nz_part[r+1] - nz_part[r];
my_id = r*(P*Q) + q*P + p;
num_procs = P*Q*R;
local_num_rows = nx_local*ny_local*nz_local;
diag_i = hypre_CTAlloc(HYPRE_Int, local_num_rows+1);
offd_i = hypre_CTAlloc(HYPRE_Int, local_num_rows+1);
P_busy = hypre_min(nx,P);
Q_busy = hypre_min(ny,Q);
R_busy = hypre_min(nz,R);
num_cols_offd = 0;
if (p) num_cols_offd += ny_local*nz_local;
if (p < P_busy-1) num_cols_offd += ny_local*nz_local;
if (q) num_cols_offd += nx_local*nz_local;
if (q < Q_busy-1) num_cols_offd += nx_local*nz_local;
if (r) num_cols_offd += nx_local*ny_local;
if (r < R_busy-1) num_cols_offd += nx_local*ny_local;
if (!local_num_rows) num_cols_offd = 0;
col_map_offd = hypre_CTAlloc(HYPRE_Int, num_cols_offd);
cnt = 1;
o_cnt = 1;
diag_i[0] = 0;
offd_i[0] = 0;
for (iz = nz_part[r]; iz < nz_part[r+1]; iz++)
{
for (iy = ny_part[q]; iy < ny_part[q+1]; iy++)
{
for (ix = nx_part[p]; ix < nx_part[p+1]; ix++)
{
diag_i[cnt] = diag_i[cnt-1];
offd_i[o_cnt] = offd_i[o_cnt-1];
diag_i[cnt]++;
if (iz > nz_part[r])
diag_i[cnt]++;
else
{
if (iz)
{
offd_i[o_cnt]++;
}
}
if (iy > ny_part[q])
diag_i[cnt]++;
else
{
if (iy)
{
offd_i[o_cnt]++;
}
}
if (ix > nx_part[p])
diag_i[cnt]++;
else
{
if (ix)
{
offd_i[o_cnt]++;
}
}
if (ix+1 < nx_part[p+1])
diag_i[cnt]++;
else
{
if (ix+1 < nx)
{
offd_i[o_cnt]++;
}
}
if (iy+1 < ny_part[q+1])
diag_i[cnt]++;
else
{
if (iy+1 < ny)
{
offd_i[o_cnt]++;
}
}
if (iz+1 < nz_part[r+1])
diag_i[cnt]++;
else
{
if (iz+1 < nz)
{
offd_i[o_cnt]++;
}
}
cnt++;
o_cnt++;
}
}
}
diag_j = hypre_CTAlloc(HYPRE_Int, diag_i[local_num_rows]);
diag_data = hypre_CTAlloc(HYPRE_Real, diag_i[local_num_rows]);
if (num_procs > 1)
{
offd_j = hypre_CTAlloc(HYPRE_Int, offd_i[local_num_rows]);
offd_data = hypre_CTAlloc(HYPRE_Real, offd_i[local_num_rows]);
}
row_index = 0;
cnt = 0;
o_cnt = 0;
for (iz = nz_part[r]; iz < nz_part[r+1]; iz++)
{
for (iy = ny_part[q]; iy < ny_part[q+1]; iy++)
{
for (ix = nx_part[p]; ix < nx_part[p+1]; ix++)
{
diag_j[cnt] = row_index;
diag_data[cnt++] = value[0];
if (iz > nz_part[r])
{
diag_j[cnt] = row_index-nx_local*ny_local;
diag_data[cnt++] = value[3];
}
else
{
if (iz)
{
offd_j[o_cnt] = hypre_map(ix,iy,iz-1,p,q,r-1,P,Q,R,
nx_part,ny_part,nz_part,global_part);
offd_data[o_cnt++] = value[3];
}
}
if (iy > ny_part[q])
{
diag_j[cnt] = row_index-nx_local;
diag_data[cnt++] = value[2];
}
else
{
if (iy)
{
offd_j[o_cnt] = hypre_map(ix,iy-1,iz,p,q-1,r,P,Q,R,
nx_part,ny_part,nz_part,global_part);
offd_data[o_cnt++] = value[2];
}
}
if (ix > nx_part[p])
{
diag_j[cnt] = row_index-1;
diag_data[cnt++] = value[1];
}
else
{
if (ix)
{
offd_j[o_cnt] = hypre_map(ix-1,iy,iz,p-1,q,r,P,Q,R,
nx_part,ny_part,nz_part,global_part);
offd_data[o_cnt++] = value[1];
}
}
if (ix+1 < nx_part[p+1])
{
diag_j[cnt] = row_index+1;
diag_data[cnt++] = value[4];
}
else
{
if (ix+1 < nx)
{
offd_j[o_cnt] = hypre_map(ix+1,iy,iz,p+1,q,r,P,Q,R,
nx_part,ny_part,nz_part,global_part);
offd_data[o_cnt++] = value[4];
}
}
if (iy+1 < ny_part[q+1])
{
diag_j[cnt] = row_index+nx_local;
diag_data[cnt++] = value[5];
}
else
{
if (iy+1 < ny)
{
offd_j[o_cnt] = hypre_map(ix,iy+1,iz,p,q+1,r,P,Q,R,
nx_part,ny_part,nz_part,global_part);
offd_data[o_cnt++] = value[5];
}
}
if (iz+1 < nz_part[r+1])
{
diag_j[cnt] = row_index+nx_local*ny_local;
diag_data[cnt++] = value[6];
}
else
{
if (iz+1 < nz)
{
offd_j[o_cnt] = hypre_map(ix,iy,iz+1,p,q,r+1,P,Q,R,
nx_part,ny_part,nz_part,global_part);
offd_data[o_cnt++] = value[6];
}
}
row_index++;
}
}
}
if (num_procs > 1)
{
for (i=0; i < num_cols_offd; i++)
col_map_offd[i] = offd_j[i];
qsort0(col_map_offd, 0, num_cols_offd-1);
for (i=0; i < num_cols_offd; i++)
for (j=0; j < num_cols_offd; j++)
if (offd_j[i] == col_map_offd[j])
{
offd_j[i] = j;
break;
}
}
A = hypre_ParCSRMatrixCreate(comm, grid_size, grid_size,
global_part, global_part, num_cols_offd,
diag_i[local_num_rows],
offd_i[local_num_rows]);
hypre_ParCSRMatrixColMapOffd(A) = col_map_offd;
diag = hypre_ParCSRMatrixDiag(A);
hypre_CSRMatrixI(diag) = diag_i;
hypre_CSRMatrixJ(diag) = diag_j;
hypre_CSRMatrixData(diag) = diag_data;
offd = hypre_ParCSRMatrixOffd(A);
hypre_CSRMatrixI(offd) = offd_i;
if (num_cols_offd)
{
hypre_CSRMatrixJ(offd) = offd_j;
hypre_CSRMatrixData(offd) = offd_data;
}
hypre_TFree(nx_part);
hypre_TFree(ny_part);
hypre_TFree(nz_part);
return (HYPRE_ParCSRMatrix) A;
}