hypre/lapack/dorml2.c
2008-07-18 01:34:48 +00:00

213 lines
5.4 KiB
C

#include "hypre_lapack.h"
#include "f2c.h"
/* Subroutine */ int dorml2_(char *side, char *trans, integer *m, integer *n,
integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
c__, integer *ldc, doublereal *work, integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
DORML2 overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(k) . . . H(2) H(1)
as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGELQF in the first k rows of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGELQF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
Test the input arguments
Parameter adjustments */
/* System generated locals */
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
/* Local variables */
static logical left;
static integer i__;
extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
doublereal *);
extern logical lsame_(char *, char *);
static integer i1, i2, i3, ic, jc, mi, ni, nq;
extern /* Subroutine */ int xerbla_(char *, integer *);
static logical notran;
static doublereal aii;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1 * 1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
left = lsame_(side, "L");
notran = lsame_(trans, "N");
/* NQ is the order of Q */
if (left) {
nq = *m;
} else {
nq = *n;
}
if (! left && ! lsame_(side, "R")) {
*info = -1;
} else if (! notran && ! lsame_(trans, "T")) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0 || *k > nq) {
*info = -5;
} else if (*lda < max(1,*k)) {
*info = -7;
} else if (*ldc < max(1,*m)) {
*info = -10;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DORML2", &i__1);
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0 || *k == 0) {
return 0;
}
if ((left && notran) || (! left && ! notran)) {
i1 = 1;
i2 = *k;
i3 = 1;
} else {
i1 = *k;
i2 = 1;
i3 = -1;
}
if (left) {
ni = *n;
jc = 1;
} else {
mi = *m;
ic = 1;
}
i__1 = i2;
i__2 = i3;
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
if (left) {
/* H(i) is applied to C(i:m,1:n) */
mi = *m - i__ + 1;
ic = i__;
} else {
/* H(i) is applied to C(1:m,i:n) */
ni = *n - i__ + 1;
jc = i__;
}
/* Apply H(i) */
aii = a_ref(i__, i__);
a_ref(i__, i__) = 1.;
dlarf_(side, &mi, &ni, &a_ref(i__, i__), lda, &tau[i__], &c___ref(ic,
jc), ldc, &work[1]);
a_ref(i__, i__) = aii;
/* L10: */
}
return 0;
/* End of DORML2 */
} /* dorml2_ */
#undef c___ref
#undef a_ref