213 lines
5.4 KiB
C
213 lines
5.4 KiB
C
|
|
#include "hypre_lapack.h"
|
|
#include "f2c.h"
|
|
|
|
/* Subroutine */ int dorml2_(char *side, char *trans, integer *m, integer *n,
|
|
integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
|
|
c__, integer *ldc, doublereal *work, integer *info)
|
|
{
|
|
/* -- LAPACK routine (version 3.0) --
|
|
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
|
|
Courant Institute, Argonne National Lab, and Rice University
|
|
February 29, 1992
|
|
|
|
|
|
Purpose
|
|
=======
|
|
|
|
DORML2 overwrites the general real m by n matrix C with
|
|
|
|
Q * C if SIDE = 'L' and TRANS = 'N', or
|
|
|
|
Q'* C if SIDE = 'L' and TRANS = 'T', or
|
|
|
|
C * Q if SIDE = 'R' and TRANS = 'N', or
|
|
|
|
C * Q' if SIDE = 'R' and TRANS = 'T',
|
|
|
|
where Q is a real orthogonal matrix defined as the product of k
|
|
elementary reflectors
|
|
|
|
Q = H(k) . . . H(2) H(1)
|
|
|
|
as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n
|
|
if SIDE = 'R'.
|
|
|
|
Arguments
|
|
=========
|
|
|
|
SIDE (input) CHARACTER*1
|
|
= 'L': apply Q or Q' from the Left
|
|
= 'R': apply Q or Q' from the Right
|
|
|
|
TRANS (input) CHARACTER*1
|
|
= 'N': apply Q (No transpose)
|
|
= 'T': apply Q' (Transpose)
|
|
|
|
M (input) INTEGER
|
|
The number of rows of the matrix C. M >= 0.
|
|
|
|
N (input) INTEGER
|
|
The number of columns of the matrix C. N >= 0.
|
|
|
|
K (input) INTEGER
|
|
The number of elementary reflectors whose product defines
|
|
the matrix Q.
|
|
If SIDE = 'L', M >= K >= 0;
|
|
if SIDE = 'R', N >= K >= 0.
|
|
|
|
A (input) DOUBLE PRECISION array, dimension
|
|
(LDA,M) if SIDE = 'L',
|
|
(LDA,N) if SIDE = 'R'
|
|
The i-th row must contain the vector which defines the
|
|
elementary reflector H(i), for i = 1,2,...,k, as returned by
|
|
DGELQF in the first k rows of its array argument A.
|
|
A is modified by the routine but restored on exit.
|
|
|
|
LDA (input) INTEGER
|
|
The leading dimension of the array A. LDA >= max(1,K).
|
|
|
|
TAU (input) DOUBLE PRECISION array, dimension (K)
|
|
TAU(i) must contain the scalar factor of the elementary
|
|
reflector H(i), as returned by DGELQF.
|
|
|
|
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
|
|
On entry, the m by n matrix C.
|
|
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
|
|
|
|
LDC (input) INTEGER
|
|
The leading dimension of the array C. LDC >= max(1,M).
|
|
|
|
WORK (workspace) DOUBLE PRECISION array, dimension
|
|
(N) if SIDE = 'L',
|
|
(M) if SIDE = 'R'
|
|
|
|
INFO (output) INTEGER
|
|
= 0: successful exit
|
|
< 0: if INFO = -i, the i-th argument had an illegal value
|
|
|
|
=====================================================================
|
|
|
|
|
|
Test the input arguments
|
|
|
|
Parameter adjustments */
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
|
|
/* Local variables */
|
|
static logical left;
|
|
static integer i__;
|
|
extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
|
|
doublereal *, integer *, doublereal *, doublereal *, integer *,
|
|
doublereal *);
|
|
extern logical lsame_(char *, char *);
|
|
static integer i1, i2, i3, ic, jc, mi, ni, nq;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
static logical notran;
|
|
static doublereal aii;
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
|
|
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
--tau;
|
|
c_dim1 = *ldc;
|
|
c_offset = 1 + c_dim1 * 1;
|
|
c__ -= c_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
left = lsame_(side, "L");
|
|
notran = lsame_(trans, "N");
|
|
|
|
/* NQ is the order of Q */
|
|
|
|
if (left) {
|
|
nq = *m;
|
|
} else {
|
|
nq = *n;
|
|
}
|
|
if (! left && ! lsame_(side, "R")) {
|
|
*info = -1;
|
|
} else if (! notran && ! lsame_(trans, "T")) {
|
|
*info = -2;
|
|
} else if (*m < 0) {
|
|
*info = -3;
|
|
} else if (*n < 0) {
|
|
*info = -4;
|
|
} else if (*k < 0 || *k > nq) {
|
|
*info = -5;
|
|
} else if (*lda < max(1,*k)) {
|
|
*info = -7;
|
|
} else if (*ldc < max(1,*m)) {
|
|
*info = -10;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("DORML2", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*m == 0 || *n == 0 || *k == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if ((left && notran) || (! left && ! notran)) {
|
|
i1 = 1;
|
|
i2 = *k;
|
|
i3 = 1;
|
|
} else {
|
|
i1 = *k;
|
|
i2 = 1;
|
|
i3 = -1;
|
|
}
|
|
|
|
if (left) {
|
|
ni = *n;
|
|
jc = 1;
|
|
} else {
|
|
mi = *m;
|
|
ic = 1;
|
|
}
|
|
|
|
i__1 = i2;
|
|
i__2 = i3;
|
|
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
|
|
if (left) {
|
|
|
|
/* H(i) is applied to C(i:m,1:n) */
|
|
|
|
mi = *m - i__ + 1;
|
|
ic = i__;
|
|
} else {
|
|
|
|
/* H(i) is applied to C(1:m,i:n) */
|
|
|
|
ni = *n - i__ + 1;
|
|
jc = i__;
|
|
}
|
|
|
|
/* Apply H(i) */
|
|
|
|
aii = a_ref(i__, i__);
|
|
a_ref(i__, i__) = 1.;
|
|
dlarf_(side, &mi, &ni, &a_ref(i__, i__), lda, &tau[i__], &c___ref(ic,
|
|
jc), ldc, &work[1]);
|
|
a_ref(i__, i__) = aii;
|
|
/* L10: */
|
|
}
|
|
return 0;
|
|
|
|
/* End of DORML2 */
|
|
|
|
} /* dorml2_ */
|
|
|
|
#undef c___ref
|
|
#undef a_ref
|
|
|
|
|