Changed MPI routines to hypre_MPI routines. Added hypre_printf, etc. routines. Added AUTOTEST tests to look for 'int' and 'MPI_' calls. Added a new approach for the Fortran interface (not implemented everywhere yet).
1190 lines
38 KiB
C
1190 lines
38 KiB
C
/*BHEADER**********************************************************************
|
|
* Copyright (c) 2008, Lawrence Livermore National Security, LLC.
|
|
* Produced at the Lawrence Livermore National Laboratory.
|
|
* This file is part of HYPRE. See file COPYRIGHT for details.
|
|
*
|
|
* HYPRE is free software; you can redistribute it and/or modify it under the
|
|
* terms of the GNU Lesser General Public License (as published by the Free
|
|
* Software Foundation) version 2.1 dated February 1999.
|
|
*
|
|
* $Revision$
|
|
***********************************************************************EHEADER*/
|
|
|
|
|
|
|
|
|
|
|
|
#include "headers.h"
|
|
|
|
/*--------------------------------------------------------------------------
|
|
* hypre_GenerateLaplacian
|
|
*--------------------------------------------------------------------------*/
|
|
|
|
hypre_CSRMatrix *
|
|
hypre_GenerateLaplacian( HYPRE_Int nx,
|
|
HYPRE_Int ny,
|
|
HYPRE_Int nz,
|
|
HYPRE_Int P,
|
|
HYPRE_Int Q,
|
|
HYPRE_Int R,
|
|
double *value )
|
|
{
|
|
hypre_CSRMatrix *A;
|
|
|
|
HYPRE_Int *A_i;
|
|
HYPRE_Int *A_j;
|
|
double *A_data;
|
|
|
|
HYPRE_Int *global_part;
|
|
HYPRE_Int ix, iy, iz;
|
|
HYPRE_Int p, q, r;
|
|
HYPRE_Int cnt;
|
|
HYPRE_Int num_rows;
|
|
HYPRE_Int row_index;
|
|
|
|
HYPRE_Int nx_size, ny_size, nz_size;
|
|
|
|
HYPRE_Int *nx_part;
|
|
HYPRE_Int *ny_part;
|
|
HYPRE_Int *nz_part;
|
|
|
|
num_rows = nx*ny*nz;
|
|
|
|
hypre_GeneratePartitioning(nx,P,&nx_part);
|
|
hypre_GeneratePartitioning(ny,Q,&ny_part);
|
|
hypre_GeneratePartitioning(nz,R,&nz_part);
|
|
|
|
global_part = hypre_CTAlloc(HYPRE_Int,P*Q*R+1);
|
|
|
|
global_part[0] = 0;
|
|
cnt = 1;
|
|
for (iz = 0; iz < R; iz++)
|
|
{
|
|
nz_size = nz_part[iz+1]-nz_part[iz];
|
|
for (iy = 0; iy < Q; iy++)
|
|
{
|
|
ny_size = ny_part[iy+1]-ny_part[iy];
|
|
for (ix = 0; ix < P; ix++)
|
|
{
|
|
nx_size = nx_part[ix+1] - nx_part[ix];
|
|
global_part[cnt] = global_part[cnt-1];
|
|
global_part[cnt++] += nx_size*ny_size*nz_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
A_i = hypre_CTAlloc(HYPRE_Int, num_rows+1);
|
|
|
|
cnt = 1;
|
|
A_i[0] = 0;
|
|
for (r = 0; r < R; r++)
|
|
{
|
|
for (q = 0; q < Q; q++)
|
|
{
|
|
for (p = 0; p < P; p++)
|
|
{
|
|
for (iz = nz_part[r]; iz < nz_part[r+1]; iz++)
|
|
{
|
|
for (iy = ny_part[q]; iy < ny_part[q+1]; iy++)
|
|
{
|
|
for (ix = nx_part[p]; ix < nx_part[p+1]; ix++)
|
|
{
|
|
A_i[cnt] = A_i[cnt-1];
|
|
A_i[cnt]++;
|
|
if (iz > nz_part[r])
|
|
A_i[cnt]++;
|
|
else
|
|
{
|
|
if (iz)
|
|
{
|
|
A_i[cnt]++;
|
|
}
|
|
}
|
|
if (iy > ny_part[q])
|
|
A_i[cnt]++;
|
|
else
|
|
{
|
|
if (iy)
|
|
{
|
|
A_i[cnt]++;
|
|
}
|
|
}
|
|
if (ix > nx_part[p])
|
|
A_i[cnt]++;
|
|
else
|
|
{
|
|
if (ix)
|
|
{
|
|
A_i[cnt]++;
|
|
}
|
|
}
|
|
if (ix+1 < nx_part[p+1])
|
|
A_i[cnt]++;
|
|
else
|
|
{
|
|
if (ix+1 < nx)
|
|
{
|
|
A_i[cnt]++;
|
|
}
|
|
}
|
|
if (iy+1 < ny_part[q+1])
|
|
A_i[cnt]++;
|
|
else
|
|
{
|
|
if (iy+1 < ny)
|
|
{
|
|
A_i[cnt]++;
|
|
}
|
|
}
|
|
if (iz+1 < nz_part[r+1])
|
|
A_i[cnt]++;
|
|
else
|
|
{
|
|
if (iz+1 < nz)
|
|
{
|
|
A_i[cnt]++;
|
|
}
|
|
}
|
|
cnt++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
A_j = hypre_CTAlloc(HYPRE_Int, A_i[num_rows]);
|
|
A_data = hypre_CTAlloc(double, A_i[num_rows]);
|
|
|
|
row_index = 0;
|
|
cnt = 0;
|
|
for (r = 0; r < R; r++)
|
|
{
|
|
for (q = 0; q < Q; q++)
|
|
{
|
|
ny_size = ny_part[q+1]-ny_part[q];
|
|
for (p = 0; p < P; p++)
|
|
{
|
|
nx_size = nx_part[p+1] - nx_part[p];
|
|
for (iz = nz_part[r]; iz < nz_part[r+1]; iz++)
|
|
{
|
|
for (iy = ny_part[q]; iy < ny_part[q+1]; iy++)
|
|
{
|
|
for (ix = nx_part[p]; ix < nx_part[p+1]; ix++)
|
|
{
|
|
A_j[cnt] = row_index;
|
|
A_data[cnt++] = value[0];
|
|
if (iz > nz_part[r])
|
|
{
|
|
A_j[cnt] = row_index-nx_size*ny_size;
|
|
A_data[cnt++] = value[3];
|
|
}
|
|
else
|
|
{
|
|
if (iz)
|
|
{
|
|
A_j[cnt] = map(ix,iy,iz-1,p,q,r-1,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
A_data[cnt++] = value[3];
|
|
}
|
|
}
|
|
if (iy > ny_part[q])
|
|
{
|
|
A_j[cnt] = row_index-nx_size;
|
|
A_data[cnt++] = value[2];
|
|
}
|
|
else
|
|
{
|
|
if (iy)
|
|
{
|
|
A_j[cnt] = map(ix,iy-1,iz,p,q-1,r,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
A_data[cnt++] = value[2];
|
|
}
|
|
}
|
|
if (ix > nx_part[p])
|
|
{
|
|
A_j[cnt] = row_index-1;
|
|
A_data[cnt++] = value[1];
|
|
}
|
|
else
|
|
{
|
|
if (ix)
|
|
{
|
|
A_j[cnt] = map(ix-1,iy,iz,p-1,q,r,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
A_data[cnt++] = value[1];
|
|
}
|
|
}
|
|
if (ix+1 < nx_part[p+1])
|
|
{
|
|
A_j[cnt] = row_index+1;
|
|
A_data[cnt++] = value[1];
|
|
}
|
|
else
|
|
{
|
|
if (ix+1 < nx)
|
|
{
|
|
A_j[cnt] = map(ix+1,iy,iz,p+1,q,r,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
A_data[cnt++] = value[1];
|
|
}
|
|
}
|
|
if (iy+1 < ny_part[q+1])
|
|
{
|
|
A_j[cnt] = row_index+nx_size;
|
|
A_data[cnt++] = value[2];
|
|
}
|
|
else
|
|
{
|
|
if (iy+1 < ny)
|
|
{
|
|
A_j[cnt] = map(ix,iy+1,iz,p,q+1,r,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
A_data[cnt++] = value[2];
|
|
}
|
|
}
|
|
if (iz+1 < nz_part[r+1])
|
|
{
|
|
A_j[cnt] = row_index+nx_size*ny_size;
|
|
A_data[cnt++] = value[3];
|
|
}
|
|
else
|
|
{
|
|
if (iz+1 < nz)
|
|
{
|
|
A_j[cnt] = map(ix,iy,iz+1,p,q,r+1,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
A_data[cnt++] = value[3];
|
|
}
|
|
}
|
|
row_index++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
A = hypre_CSRMatrixCreate(num_rows, num_rows, A_i[num_rows]);
|
|
|
|
hypre_CSRMatrixI(A) = A_i;
|
|
hypre_CSRMatrixJ(A) = A_j;
|
|
hypre_CSRMatrixData(A) = A_data;
|
|
|
|
hypre_TFree(nx_part);
|
|
hypre_TFree(ny_part);
|
|
hypre_TFree(nz_part);
|
|
hypre_TFree(global_part);
|
|
|
|
return A;
|
|
}
|
|
|
|
/*--------------------------------------------------------------------------
|
|
*--------------------------------------------------------------------------*/
|
|
|
|
HYPRE_Int
|
|
map( HYPRE_Int ix,
|
|
HYPRE_Int iy,
|
|
HYPRE_Int iz,
|
|
HYPRE_Int p,
|
|
HYPRE_Int q,
|
|
HYPRE_Int r,
|
|
HYPRE_Int P,
|
|
HYPRE_Int Q,
|
|
HYPRE_Int R,
|
|
HYPRE_Int *nx_part,
|
|
HYPRE_Int *ny_part,
|
|
HYPRE_Int *nz_part,
|
|
HYPRE_Int *global_part )
|
|
{
|
|
HYPRE_Int nx_local;
|
|
HYPRE_Int ny_local;
|
|
HYPRE_Int ix_local;
|
|
HYPRE_Int iy_local;
|
|
HYPRE_Int iz_local;
|
|
HYPRE_Int global_index;
|
|
HYPRE_Int proc_num;
|
|
|
|
proc_num = r*P*Q + q*P + p;
|
|
nx_local = nx_part[p+1] - nx_part[p];
|
|
ny_local = ny_part[q+1] - ny_part[q];
|
|
ix_local = ix - nx_part[p];
|
|
iy_local = iy - ny_part[q];
|
|
iz_local = iz - nz_part[r];
|
|
global_index = global_part[proc_num]
|
|
+ (iz_local*ny_local+iy_local)*nx_local + ix_local;
|
|
|
|
return global_index;
|
|
}
|
|
|
|
|
|
/*--------------------------------------------------------------------------
|
|
* hypre_GenerateSystemLaplacian
|
|
*--------------------------------------------------------------------------*/
|
|
|
|
hypre_CSRMatrix *
|
|
hypre_GenerateSysLaplacian( HYPRE_Int nx,
|
|
HYPRE_Int ny,
|
|
HYPRE_Int nz,
|
|
HYPRE_Int P,
|
|
HYPRE_Int Q,
|
|
HYPRE_Int R,
|
|
HYPRE_Int num_fun,
|
|
double *mtrx,
|
|
double *value )
|
|
{
|
|
hypre_CSRMatrix *A;
|
|
|
|
HYPRE_Int *A_i;
|
|
HYPRE_Int *A_j;
|
|
double *A_data;
|
|
|
|
HYPRE_Int *global_part;
|
|
HYPRE_Int ix, iy, iz;
|
|
HYPRE_Int p, q, r;
|
|
HYPRE_Int cnt;
|
|
HYPRE_Int num_rows, grid_size;
|
|
HYPRE_Int row_index, row, col;
|
|
HYPRE_Int index;
|
|
HYPRE_Int i,j;
|
|
HYPRE_Int num_coeffs;
|
|
HYPRE_Int first_j, j_ind;
|
|
|
|
HYPRE_Int nx_size, ny_size, nz_size;
|
|
|
|
|
|
HYPRE_Int *nx_part;
|
|
HYPRE_Int *ny_part;
|
|
HYPRE_Int *nz_part;
|
|
|
|
HYPRE_Int diag_index;
|
|
|
|
|
|
double val;
|
|
|
|
|
|
grid_size = nx*ny*nz;
|
|
|
|
hypre_GeneratePartitioning(nx,P,&nx_part);
|
|
hypre_GeneratePartitioning(ny,Q,&ny_part);
|
|
hypre_GeneratePartitioning(nz,R,&nz_part);
|
|
|
|
global_part = hypre_CTAlloc(HYPRE_Int,P*Q*R+1);
|
|
|
|
global_part[0] = 0;
|
|
cnt = 1;
|
|
for (iz = 0; iz < R; iz++)
|
|
{
|
|
nz_size = nz_part[iz+1]-nz_part[iz];
|
|
for (iy = 0; iy < Q; iy++)
|
|
{
|
|
ny_size = ny_part[iy+1]-ny_part[iy];
|
|
for (ix = 0; ix < P; ix++)
|
|
{
|
|
nx_size = nx_part[ix+1] - nx_part[ix];
|
|
global_part[cnt] = global_part[cnt-1];
|
|
global_part[cnt++] += nx_size*ny_size*nz_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
num_rows = grid_size*num_fun;
|
|
|
|
A_i = hypre_CTAlloc(HYPRE_Int, num_rows+1);
|
|
|
|
cnt = 1;
|
|
A_i[0] = 0;
|
|
for (r = 0; r < R; r++)
|
|
{
|
|
for (q = 0; q < Q; q++)
|
|
{
|
|
for (p = 0; p < P; p++)
|
|
{
|
|
for (iz = nz_part[r]; iz < nz_part[r+1]; iz++)
|
|
{
|
|
for (iy = ny_part[q]; iy < ny_part[q+1]; iy++)
|
|
{
|
|
for (ix = nx_part[p]; ix < nx_part[p+1]; ix++)
|
|
{
|
|
A_i[cnt] = A_i[cnt-1];
|
|
A_i[cnt] += num_fun;
|
|
if (iz > nz_part[r])
|
|
A_i[cnt] += num_fun;
|
|
else
|
|
{
|
|
if (iz)
|
|
{
|
|
A_i[cnt] += num_fun;
|
|
}
|
|
}
|
|
if (iy > ny_part[q])
|
|
A_i[cnt] += num_fun;
|
|
else
|
|
{
|
|
if (iy)
|
|
{
|
|
A_i[cnt] += num_fun;
|
|
}
|
|
}
|
|
if (ix > nx_part[p])
|
|
A_i[cnt] += num_fun;
|
|
else
|
|
{
|
|
if (ix)
|
|
{
|
|
A_i[cnt] += num_fun;
|
|
}
|
|
}
|
|
if (ix+1 < nx_part[p+1])
|
|
A_i[cnt] += num_fun;
|
|
else
|
|
{
|
|
if (ix+1 < nx)
|
|
{
|
|
A_i[cnt] += num_fun;
|
|
}
|
|
}
|
|
if (iy+1 < ny_part[q+1])
|
|
A_i[cnt] += num_fun;
|
|
else
|
|
{
|
|
if (iy+1 < ny)
|
|
{
|
|
A_i[cnt] += num_fun;
|
|
}
|
|
}
|
|
if (iz+1 < nz_part[r+1])
|
|
A_i[cnt] += num_fun;
|
|
else
|
|
{
|
|
if (iz+1 < nz)
|
|
{
|
|
A_i[cnt] += num_fun;
|
|
}
|
|
}
|
|
|
|
|
|
num_coeffs = A_i[cnt]-A_i[cnt-1];
|
|
cnt++;
|
|
|
|
for (i=1; i < num_fun; i++)
|
|
{
|
|
A_i[cnt] = A_i[cnt-1]+num_coeffs;
|
|
cnt++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
A_j = hypre_CTAlloc(HYPRE_Int, A_i[num_rows]);
|
|
A_data = hypre_CTAlloc(double, A_i[num_rows]);
|
|
|
|
row_index = 0;
|
|
|
|
for (r = 0; r < R; r++)
|
|
{
|
|
for (q = 0; q < Q; q++)
|
|
{
|
|
for (p = 0; p < P; p++)
|
|
{
|
|
|
|
for (iz = nz_part[r]; iz < nz_part[r+1]; iz++)
|
|
{
|
|
for (iy = ny_part[q]; iy < ny_part[q+1]; iy++)
|
|
{
|
|
for (ix = nx_part[p]; ix < nx_part[p+1]; ix++)
|
|
{
|
|
cnt = A_i[row_index];
|
|
num_coeffs = A_i[row_index+1]-A_i[row_index];
|
|
|
|
first_j = row_index;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[0]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
if (iz > nz_part[r])
|
|
{
|
|
first_j = row_index-nx_size*ny_size*num_fun;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[3]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
else
|
|
{
|
|
if (iz)
|
|
{
|
|
first_j = num_fun*map(ix,iy,iz-1,p,q,r-1,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[3]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
}
|
|
if (iy > ny_part[q])
|
|
{
|
|
first_j = row_index-nx_size*num_fun;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[2]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
else
|
|
{
|
|
if (iy)
|
|
{
|
|
first_j = num_fun*map(ix,iy-1,iz,p,q-1,r,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[2]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
}
|
|
if (ix > nx_part[p])
|
|
{
|
|
first_j = row_index-num_fun;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[1]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
else
|
|
{
|
|
if (ix)
|
|
{
|
|
first_j = num_fun*map(ix-1,iy,iz,p-1,q,r,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[1]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
}
|
|
if (ix+1 < nx_part[p+1])
|
|
{
|
|
first_j = row_index+num_fun;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[1]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
else
|
|
{
|
|
if (ix+1 < nx)
|
|
{
|
|
first_j = num_fun*map(ix+1,iy,iz,p+1,q,r,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[1]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
}
|
|
if (iy+1 < ny_part[q+1])
|
|
{
|
|
first_j = row_index+nx_size*num_fun;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[2]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
else
|
|
{
|
|
if (iy+1 < ny)
|
|
{
|
|
first_j = num_fun*map(ix,iy+1,iz,p,q+1,r,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[2]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
}
|
|
if (iz+1 < nz_part[r+1])
|
|
{
|
|
first_j = row_index+nx_size*ny_size*num_fun;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[3]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
else
|
|
{
|
|
if (iz+1 < nz)
|
|
{
|
|
first_j = num_fun*map(ix,iy,iz+1,p,q,r+1,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[3]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
}
|
|
row_index += num_fun;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
for (i=0; i < 2; i++)
|
|
global_part[i] *= num_fun;
|
|
|
|
for (j=1; j< num_fun; j++)
|
|
{
|
|
for (i=0; i<grid_size; i++)
|
|
{
|
|
row = i*num_fun+j;
|
|
diag_index = A_i[row];
|
|
index = diag_index+j;
|
|
val = A_data[diag_index];
|
|
col = A_j[diag_index];
|
|
A_data[diag_index] = A_data[index];
|
|
A_j[diag_index] = A_j[index];
|
|
A_data[index] = val;
|
|
A_j[index] = col;
|
|
}
|
|
}
|
|
|
|
A = hypre_CSRMatrixCreate(num_rows, num_rows, A_i[num_rows]);
|
|
|
|
hypre_CSRMatrixI(A) = A_i;
|
|
hypre_CSRMatrixJ(A) = A_j;
|
|
hypre_CSRMatrixData(A) = A_data;
|
|
|
|
|
|
hypre_TFree(nx_part);
|
|
hypre_TFree(ny_part);
|
|
hypre_TFree(nz_part);
|
|
hypre_TFree(global_part);
|
|
|
|
return A;
|
|
}
|
|
|
|
|
|
/*--------------------------------------------------------------------------
|
|
* hypre_GenerateSystemLaplacianVCoef
|
|
*--------------------------------------------------------------------------*/
|
|
|
|
hypre_CSRMatrix *
|
|
hypre_GenerateSysLaplacianVCoef( HYPRE_Int nx,
|
|
HYPRE_Int ny,
|
|
HYPRE_Int nz,
|
|
HYPRE_Int P,
|
|
HYPRE_Int Q,
|
|
HYPRE_Int R,
|
|
HYPRE_Int num_fun,
|
|
double *mtrx,
|
|
double *value )
|
|
{
|
|
hypre_CSRMatrix *A;
|
|
|
|
HYPRE_Int *A_i;
|
|
HYPRE_Int *A_j;
|
|
double *A_data;
|
|
|
|
HYPRE_Int *global_part;
|
|
HYPRE_Int ix, iy, iz;
|
|
HYPRE_Int p, q, r;
|
|
HYPRE_Int cnt;
|
|
HYPRE_Int num_rows, grid_size;
|
|
HYPRE_Int row_index, row, col;
|
|
HYPRE_Int index;
|
|
HYPRE_Int i,j;
|
|
HYPRE_Int num_coeffs;
|
|
HYPRE_Int first_j, j_ind;
|
|
|
|
HYPRE_Int nx_size, ny_size, nz_size;
|
|
|
|
|
|
HYPRE_Int *nx_part;
|
|
HYPRE_Int *ny_part;
|
|
HYPRE_Int *nz_part;
|
|
|
|
HYPRE_Int diag_index;
|
|
|
|
|
|
double val;
|
|
|
|
/* for indexing in values */
|
|
HYPRE_Int sz = num_fun*num_fun;
|
|
|
|
grid_size = nx*ny*nz;
|
|
|
|
hypre_GeneratePartitioning(nx,P,&nx_part);
|
|
hypre_GeneratePartitioning(ny,Q,&ny_part);
|
|
hypre_GeneratePartitioning(nz,R,&nz_part);
|
|
|
|
global_part = hypre_CTAlloc(HYPRE_Int,P*Q*R+1);
|
|
|
|
global_part[0] = 0;
|
|
cnt = 1;
|
|
for (iz = 0; iz < R; iz++)
|
|
{
|
|
nz_size = nz_part[iz+1]-nz_part[iz];
|
|
for (iy = 0; iy < Q; iy++)
|
|
{
|
|
ny_size = ny_part[iy+1]-ny_part[iy];
|
|
for (ix = 0; ix < P; ix++)
|
|
{
|
|
nx_size = nx_part[ix+1] - nx_part[ix];
|
|
global_part[cnt] = global_part[cnt-1];
|
|
global_part[cnt++] += nx_size*ny_size*nz_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
num_rows = grid_size*num_fun;
|
|
|
|
A_i = hypre_CTAlloc(HYPRE_Int, num_rows+1);
|
|
|
|
cnt = 1;
|
|
A_i[0] = 0;
|
|
for (r = 0; r < R; r++)
|
|
{
|
|
for (q = 0; q < Q; q++)
|
|
{
|
|
for (p = 0; p < P; p++)
|
|
{
|
|
for (iz = nz_part[r]; iz < nz_part[r+1]; iz++)
|
|
{
|
|
for (iy = ny_part[q]; iy < ny_part[q+1]; iy++)
|
|
{
|
|
for (ix = nx_part[p]; ix < nx_part[p+1]; ix++)
|
|
{
|
|
A_i[cnt] = A_i[cnt-1];
|
|
A_i[cnt] += num_fun;
|
|
if (iz > nz_part[r])
|
|
A_i[cnt] += num_fun;
|
|
else
|
|
{
|
|
if (iz)
|
|
{
|
|
A_i[cnt] += num_fun;
|
|
}
|
|
}
|
|
if (iy > ny_part[q])
|
|
A_i[cnt] += num_fun;
|
|
else
|
|
{
|
|
if (iy)
|
|
{
|
|
A_i[cnt] += num_fun;
|
|
}
|
|
}
|
|
if (ix > nx_part[p])
|
|
A_i[cnt] += num_fun;
|
|
else
|
|
{
|
|
if (ix)
|
|
{
|
|
A_i[cnt] += num_fun;
|
|
}
|
|
}
|
|
if (ix+1 < nx_part[p+1])
|
|
A_i[cnt] += num_fun;
|
|
else
|
|
{
|
|
if (ix+1 < nx)
|
|
{
|
|
A_i[cnt] += num_fun;
|
|
}
|
|
}
|
|
if (iy+1 < ny_part[q+1])
|
|
A_i[cnt] += num_fun;
|
|
else
|
|
{
|
|
if (iy+1 < ny)
|
|
{
|
|
A_i[cnt] += num_fun;
|
|
}
|
|
}
|
|
if (iz+1 < nz_part[r+1])
|
|
A_i[cnt] += num_fun;
|
|
else
|
|
{
|
|
if (iz+1 < nz)
|
|
{
|
|
A_i[cnt] += num_fun;
|
|
}
|
|
}
|
|
|
|
|
|
num_coeffs = A_i[cnt]-A_i[cnt-1];
|
|
cnt++;
|
|
|
|
for (i=1; i < num_fun; i++)
|
|
{
|
|
A_i[cnt] = A_i[cnt-1]+num_coeffs;
|
|
cnt++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
A_j = hypre_CTAlloc(HYPRE_Int, A_i[num_rows]);
|
|
A_data = hypre_CTAlloc(double, A_i[num_rows]);
|
|
|
|
row_index = 0;
|
|
|
|
for (r = 0; r < R; r++)
|
|
{
|
|
for (q = 0; q < Q; q++)
|
|
{
|
|
for (p = 0; p < P; p++)
|
|
{
|
|
|
|
for (iz = nz_part[r]; iz < nz_part[r+1]; iz++)
|
|
{
|
|
for (iy = ny_part[q]; iy < ny_part[q+1]; iy++)
|
|
{
|
|
for (ix = nx_part[p]; ix < nx_part[p+1]; ix++)
|
|
{
|
|
cnt = A_i[row_index];
|
|
num_coeffs = A_i[row_index+1]-A_i[row_index];
|
|
|
|
first_j = row_index;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[0*sz + i*num_fun+j]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
if (iz > nz_part[r])
|
|
{
|
|
first_j = row_index-nx_size*ny_size*num_fun;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[3*sz + i*num_fun+j ]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
else
|
|
{
|
|
if (iz)
|
|
{
|
|
first_j = num_fun*map(ix,iy,iz-1,p,q,r-1,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[3*sz + i*num_fun+j ]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
}
|
|
if (iy > ny_part[q])
|
|
{
|
|
first_j = row_index-nx_size*num_fun;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[2*sz + i*num_fun+j]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
else
|
|
{
|
|
if (iy)
|
|
{
|
|
first_j = num_fun*map(ix,iy-1,iz,p,q-1,r,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[2*sz + i*num_fun+j]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
}
|
|
if (ix > nx_part[p])
|
|
{
|
|
first_j = row_index-num_fun;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[1*sz + i*num_fun+j]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
else
|
|
{
|
|
if (ix)
|
|
{
|
|
first_j = num_fun*map(ix-1,iy,iz,p-1,q,r,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[1*sz + i*num_fun+j]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
}
|
|
if (ix+1 < nx_part[p+1])
|
|
{
|
|
first_j = row_index+num_fun;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[1*sz + i*num_fun+j]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
else
|
|
{
|
|
if (ix+1 < nx)
|
|
{
|
|
first_j = num_fun*map(ix+1,iy,iz,p+1,q,r,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[1*sz + i*num_fun+j]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
}
|
|
if (iy+1 < ny_part[q+1])
|
|
{
|
|
first_j = row_index+nx_size*num_fun;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[2*sz + i*num_fun+j]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
else
|
|
{
|
|
if (iy+1 < ny)
|
|
{
|
|
first_j = num_fun*map(ix,iy+1,iz,p,q+1,r,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[2*sz + i*num_fun+j]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
}
|
|
if (iz+1 < nz_part[r+1])
|
|
{
|
|
first_j = row_index+nx_size*ny_size*num_fun;
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[3*sz + i*num_fun+j]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
else
|
|
{
|
|
if (iz+1 < nz)
|
|
{
|
|
first_j = num_fun*map(ix,iy,iz+1,p,q,r+1,P,Q,R,
|
|
nx_part,ny_part,nz_part,global_part);
|
|
for (i=0; i < num_fun; i++)
|
|
{
|
|
for (j=0; j < num_fun; j++)
|
|
{
|
|
j_ind = cnt+i*num_coeffs+j;
|
|
A_j[j_ind] = first_j+j;
|
|
A_data[j_ind] = value[3*sz + i*num_fun+j]*mtrx[i*num_fun+j];
|
|
}
|
|
}
|
|
cnt += num_fun;
|
|
}
|
|
}
|
|
row_index += num_fun;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
for (i=0; i < 2; i++)
|
|
global_part[i] *= num_fun;
|
|
|
|
for (j=1; j< num_fun; j++)
|
|
{
|
|
for (i=0; i<grid_size; i++)
|
|
{
|
|
row = i*num_fun+j;
|
|
diag_index = A_i[row];
|
|
index = diag_index+j;
|
|
val = A_data[diag_index];
|
|
col = A_j[diag_index];
|
|
A_data[diag_index] = A_data[index];
|
|
A_j[diag_index] = A_j[index];
|
|
A_data[index] = val;
|
|
A_j[index] = col;
|
|
}
|
|
}
|
|
|
|
A = hypre_CSRMatrixCreate(num_rows, num_rows, A_i[num_rows]);
|
|
|
|
hypre_CSRMatrixI(A) = A_i;
|
|
hypre_CSRMatrixJ(A) = A_j;
|
|
hypre_CSRMatrixData(A) = A_data;
|
|
|
|
|
|
hypre_TFree(nx_part);
|
|
hypre_TFree(ny_part);
|
|
hypre_TFree(nz_part);
|
|
hypre_TFree(global_part);
|
|
|
|
return A;
|
|
}
|