hypre/lapack/dpotrs.c
2006-07-31 22:54:37 +00:00

166 lines
5.0 KiB
C

/*BHEADER**********************************************************************
* Copyright (c) 2006 The Regents of the University of California.
* Produced at the Lawrence Livermore National Laboratory.
* Written by the HYPRE team <hypre-users@llnl.gov>, UCRL-CODE-222953.
* All rights reserved.
*
* This file is part of HYPRE (see http://www.llnl.gov/CASC/hypre/).
* Please see the COPYRIGHT_and_LICENSE file for the copyright notice,
* disclaimer and the GNU Lesser General Public License.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License (as published by the Free
* Software Foundation) version 2.1 dated February 1999.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the IMPLIED WARRANTY OF MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the terms and conditions of the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* $Revision$
***********************************************************************EHEADER*/
#include "hypre_lapack.h"
#include "f2c.h"
/* Subroutine */ int dpotrs_(char *uplo, integer *n, integer *nrhs,
doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *
info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
March 31, 1993
Purpose
=======
DPOTRS solves a system of linear equations A*X = B with a symmetric
positive definite matrix A using the Cholesky factorization
A = U**T*U or A = L*L**T computed by DPOTRF.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPOTRF.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
Test the input parameters.
Parameter adjustments */
/* Table of constant values */
static doublereal c_b9 = 1.;
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1;
/* Local variables */
extern logical lsame_(char *, char *);
extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
integer *, integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *);
static logical upper;
extern /* Subroutine */ int xerbla_(char *, integer *);
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
} else if (*ldb < max(1,*n)) {
*info = -7;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DPOTRS", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0 || *nrhs == 0) {
return 0;
}
if (upper) {
/* Solve A*X = B where A = U'*U.
Solve U'*X = B, overwriting B with X. */
dtrsm_("Left", "Upper", "Transpose", "Non-unit", n, nrhs, &c_b9, &a[
a_offset], lda, &b[b_offset], ldb);
/* Solve U*X = B, overwriting B with X. */
dtrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b9, &
a[a_offset], lda, &b[b_offset], ldb);
} else {
/* Solve A*X = B where A = L*L'.
Solve L*X = B, overwriting B with X. */
dtrsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b9, &
a[a_offset], lda, &b[b_offset], ldb);
/* Solve L'*X = B, overwriting B with X. */
dtrsm_("Left", "Lower", "Transpose", "Non-unit", n, nrhs, &c_b9, &a[
a_offset], lda, &b[b_offset], ldb);
}
return 0;
/* End of DPOTRS */
} /* dpotrs_ */