Changed MPI routines to hypre_MPI routines. Added hypre_printf, etc. routines. Added AUTOTEST tests to look for 'int' and 'MPI_' calls. Added a new approach for the Fortran interface (not implemented everywhere yet).
372 lines
8.8 KiB
C
372 lines
8.8 KiB
C
|
|
/* -- translated by f2c (version 19940927).
|
|
You must link the resulting object file with the libraries:
|
|
-lf2c -lm (in that order)
|
|
*/
|
|
|
|
#include "f2c.h"
|
|
#include "hypre_blas.h"
|
|
|
|
/* Subroutine */ HYPRE_Int dgemm_(char *transa, char *transb, integer *m, integer *
|
|
n, integer *k, doublereal *alpha, doublereal *a, integer *lda,
|
|
doublereal *b, integer *ldb, doublereal *beta, doublereal *c, integer
|
|
*ldc)
|
|
{
|
|
|
|
|
|
/* System generated locals */
|
|
|
|
/* Local variables */
|
|
static integer info;
|
|
static logical nota, notb;
|
|
static doublereal temp;
|
|
static integer i, j, l;
|
|
extern logical hypre_lsame_(char *, char *);
|
|
static integer nrowa, nrowb;
|
|
extern /* Subroutine */ HYPRE_Int hypre_xerbla_(char *, integer *);
|
|
|
|
|
|
/* Purpose
|
|
=======
|
|
|
|
DGEMM performs one of the matrix-matrix operations
|
|
|
|
C := alpha*op( A )*op( B ) + beta*C,
|
|
|
|
where op( X ) is one of
|
|
|
|
op( X ) = X or op( X ) = X',
|
|
|
|
alpha and beta are scalars, and A, B and C are matrices, with op( A )
|
|
|
|
an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
|
|
|
|
|
|
Parameters
|
|
==========
|
|
|
|
TRANSA - CHARACTER*1.
|
|
On entry, TRANSA specifies the form of op( A ) to be used in
|
|
|
|
the matrix multiplication as follows:
|
|
|
|
TRANSA = 'N' or 'n', op( A ) = A.
|
|
|
|
TRANSA = 'T' or 't', op( A ) = A'.
|
|
|
|
TRANSA = 'C' or 'c', op( A ) = A'.
|
|
|
|
Unchanged on exit.
|
|
|
|
TRANSB - CHARACTER*1.
|
|
On entry, TRANSB specifies the form of op( B ) to be used in
|
|
|
|
the matrix multiplication as follows:
|
|
|
|
TRANSB = 'N' or 'n', op( B ) = B.
|
|
|
|
TRANSB = 'T' or 't', op( B ) = B'.
|
|
|
|
TRANSB = 'C' or 'c', op( B ) = B'.
|
|
|
|
Unchanged on exit.
|
|
|
|
M - INTEGER.
|
|
On entry, M specifies the number of rows of the matrix
|
|
|
|
op( A ) and of the matrix C. M must be at least zero.
|
|
|
|
Unchanged on exit.
|
|
|
|
N - INTEGER.
|
|
On entry, N specifies the number of columns of the matrix
|
|
|
|
op( B ) and the number of columns of the matrix C. N must be
|
|
|
|
at least zero.
|
|
Unchanged on exit.
|
|
|
|
K - INTEGER.
|
|
On entry, K specifies the number of columns of the matrix
|
|
|
|
op( A ) and the number of rows of the matrix op( B ). K must
|
|
|
|
be at least zero.
|
|
Unchanged on exit.
|
|
|
|
ALPHA - DOUBLE PRECISION.
|
|
On entry, ALPHA specifies the scalar alpha.
|
|
Unchanged on exit.
|
|
|
|
A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
|
|
|
|
k when TRANSA = 'N' or 'n', and is m otherwise.
|
|
Before entry with TRANSA = 'N' or 'n', the leading m by k
|
|
|
|
part of the array A must contain the matrix A, otherwise
|
|
|
|
the leading k by m part of the array A must contain the
|
|
|
|
matrix A.
|
|
Unchanged on exit.
|
|
|
|
LDA - INTEGER.
|
|
On entry, LDA specifies the first dimension of A as declared
|
|
|
|
in the calling (sub) program. When TRANSA = 'N' or 'n' then
|
|
|
|
LDA must be at least max( 1, m ), otherwise LDA must be at
|
|
|
|
least max( 1, k ).
|
|
Unchanged on exit.
|
|
|
|
B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
|
|
|
|
n when TRANSB = 'N' or 'n', and is k otherwise.
|
|
Before entry with TRANSB = 'N' or 'n', the leading k by n
|
|
|
|
part of the array B must contain the matrix B, otherwise
|
|
|
|
the leading n by k part of the array B must contain the
|
|
|
|
matrix B.
|
|
Unchanged on exit.
|
|
|
|
LDB - INTEGER.
|
|
On entry, LDB specifies the first dimension of B as declared
|
|
|
|
in the calling (sub) program. When TRANSB = 'N' or 'n' then
|
|
|
|
LDB must be at least max( 1, k ), otherwise LDB must be at
|
|
|
|
least max( 1, n ).
|
|
Unchanged on exit.
|
|
|
|
BETA - DOUBLE PRECISION.
|
|
On entry, BETA specifies the scalar beta. When BETA is
|
|
|
|
supplied as zero then C need not be set on input.
|
|
Unchanged on exit.
|
|
|
|
C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
|
|
Before entry, the leading m by n part of the array C must
|
|
|
|
contain the matrix C, except when beta is zero, in which
|
|
|
|
case C need not be set on entry.
|
|
On exit, the array C is overwritten by the m by n matrix
|
|
|
|
( alpha*op( A )*op( B ) + beta*C ).
|
|
|
|
LDC - INTEGER.
|
|
On entry, LDC specifies the first dimension of C as declared
|
|
|
|
in the calling (sub) program. LDC must be at least
|
|
|
|
max( 1, m ).
|
|
Unchanged on exit.
|
|
|
|
|
|
Level 3 Blas routine.
|
|
|
|
-- Written on 8-February-1989.
|
|
Jack Dongarra, Argonne National Laboratory.
|
|
Iain Duff, AERE Harwell.
|
|
Jeremy Du Croz, Numerical Algorithms Group Ltd.
|
|
Sven Hammarling, Numerical Algorithms Group Ltd.
|
|
|
|
|
|
|
|
Set NOTA and NOTB as true if A and B respectively are not
|
|
|
|
transposed and set NROWA, NCOLA and NROWB as the number of rows
|
|
|
|
and columns of A and the number of rows of B respectively.
|
|
|
|
|
|
|
|
Parameter adjustments
|
|
Function Body */
|
|
|
|
#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
|
|
#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]
|
|
#define C(I,J) c[(I)-1 + ((J)-1)* ( *ldc)]
|
|
|
|
nota = hypre_lsame_(transa, "N");
|
|
notb = hypre_lsame_(transb, "N");
|
|
if (nota) {
|
|
nrowa = *m;
|
|
} else {
|
|
nrowa = *k;
|
|
}
|
|
if (notb) {
|
|
nrowb = *k;
|
|
} else {
|
|
nrowb = *n;
|
|
}
|
|
|
|
/* Test the input parameters. */
|
|
|
|
info = 0;
|
|
if (! nota && ! hypre_lsame_(transa, "C") && ! hypre_lsame_(transa, "T")) {
|
|
info = 1;
|
|
} else if (! notb && ! hypre_lsame_(transb, "C") && ! hypre_lsame_(transb,
|
|
"T")) {
|
|
info = 2;
|
|
} else if (*m < 0) {
|
|
info = 3;
|
|
} else if (*n < 0) {
|
|
info = 4;
|
|
} else if (*k < 0) {
|
|
info = 5;
|
|
} else if (*lda < max(1,nrowa)) {
|
|
info = 8;
|
|
} else if (*ldb < max(1,nrowb)) {
|
|
info = 10;
|
|
} else if (*ldc < max(1,*m)) {
|
|
info = 13;
|
|
}
|
|
if (info != 0) {
|
|
hypre_xerbla_("DGEMM ", &info);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible. */
|
|
|
|
if (*m == 0 || *n == 0 || ((*alpha == 0. || *k == 0) && (*beta == 1.))) {
|
|
return 0;
|
|
}
|
|
|
|
/* And if alpha.eq.zero. */
|
|
|
|
if (*alpha == 0.) {
|
|
if (*beta == 0.) {
|
|
for (j = 1; j <= *n; ++j) {
|
|
for (i = 1; i <= *m; ++i) {
|
|
C(i,j) = 0.;
|
|
/* L10: */
|
|
}
|
|
/* L20: */
|
|
}
|
|
} else {
|
|
for (j = 1; j <= *n; ++j) {
|
|
for (i = 1; i <= *m; ++i) {
|
|
C(i,j) = *beta * C(i,j);
|
|
/* L30: */
|
|
}
|
|
/* L40: */
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Start the operations. */
|
|
|
|
if (notb) {
|
|
if (nota) {
|
|
|
|
/* Form C := alpha*A*B + beta*C. */
|
|
|
|
for (j = 1; j <= *n; ++j) {
|
|
if (*beta == 0.) {
|
|
for (i = 1; i <= *m; ++i) {
|
|
C(i,j) = 0.;
|
|
/* L50: */
|
|
}
|
|
} else if (*beta != 1.) {
|
|
for (i = 1; i <= *m; ++i) {
|
|
C(i,j) = *beta * C(i,j);
|
|
/* L60: */
|
|
}
|
|
}
|
|
for (l = 1; l <= *k; ++l) {
|
|
if (B(l,j) != 0.) {
|
|
temp = *alpha * B(l,j);
|
|
for (i = 1; i <= *m; ++i) {
|
|
C(i,j) += temp * A(i,l);
|
|
/* L70: */
|
|
}
|
|
}
|
|
/* L80: */
|
|
}
|
|
/* L90: */
|
|
}
|
|
} else {
|
|
|
|
/* Form C := alpha*A'*B + beta*C */
|
|
|
|
for (j = 1; j <= *n; ++j) {
|
|
for (i = 1; i <= *m; ++i) {
|
|
temp = 0.;
|
|
for (l = 1; l <= *k; ++l) {
|
|
temp += A(l,i) * B(l,j);
|
|
/* L100: */
|
|
}
|
|
if (*beta == 0.) {
|
|
C(i,j) = *alpha * temp;
|
|
} else {
|
|
C(i,j) = *alpha * temp + *beta * C(i,j);
|
|
}
|
|
/* L110: */
|
|
}
|
|
/* L120: */
|
|
}
|
|
}
|
|
} else {
|
|
if (nota) {
|
|
|
|
/* Form C := alpha*A*B' + beta*C */
|
|
|
|
for (j = 1; j <= *n; ++j) {
|
|
if (*beta == 0.) {
|
|
for (i = 1; i <= *m; ++i) {
|
|
C(i,j) = 0.;
|
|
/* L130: */
|
|
}
|
|
} else if (*beta != 1.) {
|
|
for (i = 1; i <= *m; ++i) {
|
|
C(i,j) = *beta * C(i,j);
|
|
/* L140: */
|
|
}
|
|
}
|
|
for (l = 1; l <= *k; ++l) {
|
|
if (B(j,l) != 0.) {
|
|
temp = *alpha * B(j,l);
|
|
for (i = 1; i <= *m; ++i) {
|
|
C(i,j) += temp * A(i,l);
|
|
/* L150: */
|
|
}
|
|
}
|
|
/* L160: */
|
|
}
|
|
/* L170: */
|
|
}
|
|
} else {
|
|
|
|
/* Form C := alpha*A'*B' + beta*C */
|
|
|
|
for (j = 1; j <= *n; ++j) {
|
|
for (i = 1; i <= *m; ++i) {
|
|
temp = 0.;
|
|
for (l = 1; l <= *k; ++l) {
|
|
temp += A(l,i) * B(j,l);
|
|
/* L180: */
|
|
}
|
|
if (*beta == 0.) {
|
|
C(i,j) = *alpha * temp;
|
|
} else {
|
|
C(i,j) = *alpha * temp + *beta * C(i,j);
|
|
}
|
|
/* L190: */
|
|
}
|
|
/* L200: */
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of DGEMM . */
|
|
|
|
} /* dgemm_ */
|