hypre/blas/dgemm.c
falgout e3181f26b1 Added 64 bit feature using HYPRE_Int (see tracker [issue489] for details).
Changed MPI routines to hypre_MPI routines.
Added hypre_printf, etc. routines.
Added AUTOTEST tests to look for 'int' and 'MPI_' calls.
Added a new approach for the Fortran interface (not implemented everywhere yet).
2010-12-20 19:27:44 +00:00

372 lines
8.8 KiB
C

/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
#include "hypre_blas.h"
/* Subroutine */ HYPRE_Int dgemm_(char *transa, char *transb, integer *m, integer *
n, integer *k, doublereal *alpha, doublereal *a, integer *lda,
doublereal *b, integer *ldb, doublereal *beta, doublereal *c, integer
*ldc)
{
/* System generated locals */
/* Local variables */
static integer info;
static logical nota, notb;
static doublereal temp;
static integer i, j, l;
extern logical hypre_lsame_(char *, char *);
static integer nrowa, nrowb;
extern /* Subroutine */ HYPRE_Int hypre_xerbla_(char *, integer *);
/* Purpose
=======
DGEMM performs one of the matrix-matrix operations
C := alpha*op( A )*op( B ) + beta*C,
where op( X ) is one of
op( X ) = X or op( X ) = X',
alpha and beta are scalars, and A, B and C are matrices, with op( A )
an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
Parameters
==========
TRANSA - CHARACTER*1.
On entry, TRANSA specifies the form of op( A ) to be used in
the matrix multiplication as follows:
TRANSA = 'N' or 'n', op( A ) = A.
TRANSA = 'T' or 't', op( A ) = A'.
TRANSA = 'C' or 'c', op( A ) = A'.
Unchanged on exit.
TRANSB - CHARACTER*1.
On entry, TRANSB specifies the form of op( B ) to be used in
the matrix multiplication as follows:
TRANSB = 'N' or 'n', op( B ) = B.
TRANSB = 'T' or 't', op( B ) = B'.
TRANSB = 'C' or 'c', op( B ) = B'.
Unchanged on exit.
M - INTEGER.
On entry, M specifies the number of rows of the matrix
op( A ) and of the matrix C. M must be at least zero.
Unchanged on exit.
N - INTEGER.
On entry, N specifies the number of columns of the matrix
op( B ) and the number of columns of the matrix C. N must be
at least zero.
Unchanged on exit.
K - INTEGER.
On entry, K specifies the number of columns of the matrix
op( A ) and the number of rows of the matrix op( B ). K must
be at least zero.
Unchanged on exit.
ALPHA - DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
k when TRANSA = 'N' or 'n', and is m otherwise.
Before entry with TRANSA = 'N' or 'n', the leading m by k
part of the array A must contain the matrix A, otherwise
the leading k by m part of the array A must contain the
matrix A.
Unchanged on exit.
LDA - INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When TRANSA = 'N' or 'n' then
LDA must be at least max( 1, m ), otherwise LDA must be at
least max( 1, k ).
Unchanged on exit.
B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
n when TRANSB = 'N' or 'n', and is k otherwise.
Before entry with TRANSB = 'N' or 'n', the leading k by n
part of the array B must contain the matrix B, otherwise
the leading n by k part of the array B must contain the
matrix B.
Unchanged on exit.
LDB - INTEGER.
On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. When TRANSB = 'N' or 'n' then
LDB must be at least max( 1, k ), otherwise LDB must be at
least max( 1, n ).
Unchanged on exit.
BETA - DOUBLE PRECISION.
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then C need not be set on input.
Unchanged on exit.
C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
Before entry, the leading m by n part of the array C must
contain the matrix C, except when beta is zero, in which
case C need not be set on entry.
On exit, the array C is overwritten by the m by n matrix
( alpha*op( A )*op( B ) + beta*C ).
LDC - INTEGER.
On entry, LDC specifies the first dimension of C as declared
in the calling (sub) program. LDC must be at least
max( 1, m ).
Unchanged on exit.
Level 3 Blas routine.
-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.
Set NOTA and NOTB as true if A and B respectively are not
transposed and set NROWA, NCOLA and NROWB as the number of rows
and columns of A and the number of rows of B respectively.
Parameter adjustments
Function Body */
#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
#define B(I,J) b[(I)-1 + ((J)-1)* ( *ldb)]
#define C(I,J) c[(I)-1 + ((J)-1)* ( *ldc)]
nota = hypre_lsame_(transa, "N");
notb = hypre_lsame_(transb, "N");
if (nota) {
nrowa = *m;
} else {
nrowa = *k;
}
if (notb) {
nrowb = *k;
} else {
nrowb = *n;
}
/* Test the input parameters. */
info = 0;
if (! nota && ! hypre_lsame_(transa, "C") && ! hypre_lsame_(transa, "T")) {
info = 1;
} else if (! notb && ! hypre_lsame_(transb, "C") && ! hypre_lsame_(transb,
"T")) {
info = 2;
} else if (*m < 0) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*k < 0) {
info = 5;
} else if (*lda < max(1,nrowa)) {
info = 8;
} else if (*ldb < max(1,nrowb)) {
info = 10;
} else if (*ldc < max(1,*m)) {
info = 13;
}
if (info != 0) {
hypre_xerbla_("DGEMM ", &info);
return 0;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0 || ((*alpha == 0. || *k == 0) && (*beta == 1.))) {
return 0;
}
/* And if alpha.eq.zero. */
if (*alpha == 0.) {
if (*beta == 0.) {
for (j = 1; j <= *n; ++j) {
for (i = 1; i <= *m; ++i) {
C(i,j) = 0.;
/* L10: */
}
/* L20: */
}
} else {
for (j = 1; j <= *n; ++j) {
for (i = 1; i <= *m; ++i) {
C(i,j) = *beta * C(i,j);
/* L30: */
}
/* L40: */
}
}
return 0;
}
/* Start the operations. */
if (notb) {
if (nota) {
/* Form C := alpha*A*B + beta*C. */
for (j = 1; j <= *n; ++j) {
if (*beta == 0.) {
for (i = 1; i <= *m; ++i) {
C(i,j) = 0.;
/* L50: */
}
} else if (*beta != 1.) {
for (i = 1; i <= *m; ++i) {
C(i,j) = *beta * C(i,j);
/* L60: */
}
}
for (l = 1; l <= *k; ++l) {
if (B(l,j) != 0.) {
temp = *alpha * B(l,j);
for (i = 1; i <= *m; ++i) {
C(i,j) += temp * A(i,l);
/* L70: */
}
}
/* L80: */
}
/* L90: */
}
} else {
/* Form C := alpha*A'*B + beta*C */
for (j = 1; j <= *n; ++j) {
for (i = 1; i <= *m; ++i) {
temp = 0.;
for (l = 1; l <= *k; ++l) {
temp += A(l,i) * B(l,j);
/* L100: */
}
if (*beta == 0.) {
C(i,j) = *alpha * temp;
} else {
C(i,j) = *alpha * temp + *beta * C(i,j);
}
/* L110: */
}
/* L120: */
}
}
} else {
if (nota) {
/* Form C := alpha*A*B' + beta*C */
for (j = 1; j <= *n; ++j) {
if (*beta == 0.) {
for (i = 1; i <= *m; ++i) {
C(i,j) = 0.;
/* L130: */
}
} else if (*beta != 1.) {
for (i = 1; i <= *m; ++i) {
C(i,j) = *beta * C(i,j);
/* L140: */
}
}
for (l = 1; l <= *k; ++l) {
if (B(j,l) != 0.) {
temp = *alpha * B(j,l);
for (i = 1; i <= *m; ++i) {
C(i,j) += temp * A(i,l);
/* L150: */
}
}
/* L160: */
}
/* L170: */
}
} else {
/* Form C := alpha*A'*B' + beta*C */
for (j = 1; j <= *n; ++j) {
for (i = 1; i <= *m; ++i) {
temp = 0.;
for (l = 1; l <= *k; ++l) {
temp += A(l,i) * B(j,l);
/* L180: */
}
if (*beta == 0.) {
C(i,j) = *alpha * temp;
} else {
C(i,j) = *alpha * temp + *beta * C(i,j);
}
/* L190: */
}
/* L200: */
}
}
}
return 0;
/* End of DGEMM . */
} /* dgemm_ */