hypre/blas/dsymm.c
falgout e3181f26b1 Added 64 bit feature using HYPRE_Int (see tracker [issue489] for details).
Changed MPI routines to hypre_MPI routines.
Added hypre_printf, etc. routines.
Added AUTOTEST tests to look for 'int' and 'MPI_' calls.
Added a new approach for the Fortran interface (not implemented everywhere yet).
2010-12-20 19:27:44 +00:00

294 lines
9.7 KiB
C

#include "hypre_blas.h"
#include "f2c.h"
/* Subroutine */ HYPRE_Int dsymm_(char *side, char *uplo, integer *m, integer *n,
doublereal *alpha, doublereal *a, integer *lda, doublereal *b,
integer *ldb, doublereal *beta, doublereal *c__, integer *ldc)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
i__3;
/* Local variables */
static integer info;
static doublereal temp1, temp2;
static integer i__, j, k;
extern logical hypre_lsame_(char *, char *);
static integer nrowa;
static logical upper;
extern /* Subroutine */ HYPRE_Int hypre_xerbla_(char *, integer *);
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
/* Purpose
=======
DSYMM performs one of the matrix-matrix operations
C := alpha*A*B + beta*C,
or
C := alpha*B*A + beta*C,
where alpha and beta are scalars, A is a symmetric matrix and B and
C are m by n matrices.
Parameters
==========
SIDE - CHARACTER*1.
On entry, SIDE specifies whether the symmetric matrix A
appears on the left or right in the operation as follows:
SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
Unchanged on exit.
UPLO - CHARACTER*1.
On entry, UPLO specifies whether the upper or lower
triangular part of the symmetric matrix A is to be
referenced as follows:
UPLO = 'U' or 'u' Only the upper triangular part of the
symmetric matrix is to be referenced.
UPLO = 'L' or 'l' Only the lower triangular part of the
symmetric matrix is to be referenced.
Unchanged on exit.
M - INTEGER.
On entry, M specifies the number of rows of the matrix C.
M must be at least zero.
Unchanged on exit.
N - INTEGER.
On entry, N specifies the number of columns of the matrix C.
N must be at least zero.
Unchanged on exit.
ALPHA - DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
m when SIDE = 'L' or 'l' and is n otherwise.
Before entry with SIDE = 'L' or 'l', the m by m part of
the array A must contain the symmetric matrix, such that
when UPLO = 'U' or 'u', the leading m by m upper triangular
part of the array A must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part of A is not referenced, and when UPLO = 'L' or 'l',
the leading m by m lower triangular part of the array A
must contain the lower triangular part of the symmetric
matrix and the strictly upper triangular part of A is not
referenced.
Before entry with SIDE = 'R' or 'r', the n by n part of
the array A must contain the symmetric matrix, such that
when UPLO = 'U' or 'u', the leading n by n upper triangular
part of the array A must contain the upper triangular part
of the symmetric matrix and the strictly lower triangular
part of A is not referenced, and when UPLO = 'L' or 'l',
the leading n by n lower triangular part of the array A
must contain the lower triangular part of the symmetric
matrix and the strictly upper triangular part of A is not
referenced.
Unchanged on exit.
LDA - INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When SIDE = 'L' or 'l' then
LDA must be at least max( 1, m ), otherwise LDA must be at
least max( 1, n ).
Unchanged on exit.
B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
Before entry, the leading m by n part of the array B must
contain the matrix B.
Unchanged on exit.
LDB - INTEGER.
On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. LDB must be at least
max( 1, m ).
Unchanged on exit.
BETA - DOUBLE PRECISION.
On entry, BETA specifies the scalar beta. When BETA is
supplied as zero then C need not be set on input.
Unchanged on exit.
C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
Before entry, the leading m by n part of the array C must
contain the matrix C, except when beta is zero, in which
case C need not be set on entry.
On exit, the array C is overwritten by the m by n updated
matrix.
LDC - INTEGER.
On entry, LDC specifies the first dimension of C as declared
in the calling (sub) program. LDC must be at least
max( 1, m ).
Unchanged on exit.
Level 3 Blas routine.
-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.
Set NROWA as the number of rows of A.
Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1 * 1;
c__ -= c_offset;
/* Function Body */
if (hypre_lsame_(side, "L")) {
nrowa = *m;
} else {
nrowa = *n;
}
upper = hypre_lsame_(uplo, "U");
/* Test the input parameters. */
info = 0;
if (! hypre_lsame_(side, "L") && ! hypre_lsame_(side, "R")) {
info = 1;
} else if (! upper && ! hypre_lsame_(uplo, "L")) {
info = 2;
} else if (*m < 0) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*lda < max(1,nrowa)) {
info = 7;
} else if (*ldb < max(1,*m)) {
info = 9;
} else if (*ldc < max(1,*m)) {
info = 12;
}
if (info != 0) {
hypre_xerbla_("DSYMM ", &info);
return 0;
}
/* Quick return if possible. */
if ((*m == 0 || *n == 0) || (*alpha == 0. && *beta == 1.)) {
return 0;
}
/* And when alpha.eq.zero. */
if (*alpha == 0.) {
if (*beta == 0.) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c___ref(i__, j) = 0.;
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c___ref(i__, j) = *beta * c___ref(i__, j);
/* L30: */
}
/* L40: */
}
}
return 0;
}
/* Start the operations. */
if (hypre_lsame_(side, "L")) {
/* Form C := alpha*A*B + beta*C. */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp1 = *alpha * b_ref(i__, j);
temp2 = 0.;
i__3 = i__ - 1;
for (k = 1; k <= i__3; ++k) {
c___ref(k, j) = c___ref(k, j) + temp1 * a_ref(k, i__);
temp2 += b_ref(k, j) * a_ref(k, i__);
/* L50: */
}
if (*beta == 0.) {
c___ref(i__, j) = temp1 * a_ref(i__, i__) + *alpha *
temp2;
} else {
c___ref(i__, j) = *beta * c___ref(i__, j) + temp1 *
a_ref(i__, i__) + *alpha * temp2;
}
/* L60: */
}
/* L70: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
for (i__ = *m; i__ >= 1; --i__) {
temp1 = *alpha * b_ref(i__, j);
temp2 = 0.;
i__2 = *m;
for (k = i__ + 1; k <= i__2; ++k) {
c___ref(k, j) = c___ref(k, j) + temp1 * a_ref(k, i__);
temp2 += b_ref(k, j) * a_ref(k, i__);
/* L80: */
}
if (*beta == 0.) {
c___ref(i__, j) = temp1 * a_ref(i__, i__) + *alpha *
temp2;
} else {
c___ref(i__, j) = *beta * c___ref(i__, j) + temp1 *
a_ref(i__, i__) + *alpha * temp2;
}
/* L90: */
}
/* L100: */
}
}
} else {
/* Form C := alpha*B*A + beta*C. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp1 = *alpha * a_ref(j, j);
if (*beta == 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c___ref(i__, j) = temp1 * b_ref(i__, j);
/* L110: */
}
} else {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c___ref(i__, j) = *beta * c___ref(i__, j) + temp1 * b_ref(
i__, j);
/* L120: */
}
}
i__2 = j - 1;
for (k = 1; k <= i__2; ++k) {
if (upper) {
temp1 = *alpha * a_ref(k, j);
} else {
temp1 = *alpha * a_ref(j, k);
}
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
c___ref(i__, j) = c___ref(i__, j) + temp1 * b_ref(i__, k);
/* L130: */
}
/* L140: */
}
i__2 = *n;
for (k = j + 1; k <= i__2; ++k) {
if (upper) {
temp1 = *alpha * a_ref(j, k);
} else {
temp1 = *alpha * a_ref(k, j);
}
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
c___ref(i__, j) = c___ref(i__, j) + temp1 * b_ref(i__, k);
/* L150: */
}
/* L160: */
}
/* L170: */
}
}
return 0;
/* End of DSYMM . */
} /* dsymm_ */
#undef c___ref
#undef b_ref
#undef a_ref