Changed MPI routines to hypre_MPI routines. Added hypre_printf, etc. routines. Added AUTOTEST tests to look for 'int' and 'MPI_' calls. Added a new approach for the Fortran interface (not implemented everywhere yet).
336 lines
10 KiB
C
336 lines
10 KiB
C
|
|
#include "f2c.h"
|
|
#include "hypre_blas.h"
|
|
|
|
/* Subroutine */ HYPRE_Int dsyr2k_(char *uplo, char *trans, integer *n, integer *k,
|
|
doublereal *alpha, doublereal *a, integer *lda, doublereal *b,
|
|
integer *ldb, doublereal *beta, doublereal *c__, integer *ldc)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
|
|
i__3;
|
|
/* Local variables */
|
|
static integer info;
|
|
static doublereal temp1, temp2;
|
|
static integer i__, j, l;
|
|
extern logical hypre_lsame_(char *, char *);
|
|
static integer nrowa;
|
|
static logical upper;
|
|
extern /* Subroutine */ HYPRE_Int hypre_xerbla_(char *, integer *);
|
|
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
|
|
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
|
|
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
|
|
/* Purpose
|
|
=======
|
|
DSYR2K performs one of the symmetric rank 2k operations
|
|
C := alpha*A*B' + alpha*B*A' + beta*C,
|
|
or
|
|
C := alpha*A'*B + alpha*B'*A + beta*C,
|
|
where alpha and beta are scalars, C is an n by n symmetric matrix
|
|
and A and B are n by k matrices in the first case and k by n
|
|
matrices in the second case.
|
|
Parameters
|
|
==========
|
|
UPLO - CHARACTER*1.
|
|
On entry, UPLO specifies whether the upper or lower
|
|
triangular part of the array C is to be referenced as
|
|
follows:
|
|
UPLO = 'U' or 'u' Only the upper triangular part of C
|
|
is to be referenced.
|
|
UPLO = 'L' or 'l' Only the lower triangular part of C
|
|
is to be referenced.
|
|
Unchanged on exit.
|
|
TRANS - CHARACTER*1.
|
|
On entry, TRANS specifies the operation to be performed as
|
|
follows:
|
|
TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' +
|
|
beta*C.
|
|
TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A +
|
|
beta*C.
|
|
TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A +
|
|
beta*C.
|
|
Unchanged on exit.
|
|
N - INTEGER.
|
|
On entry, N specifies the order of the matrix C. N must be
|
|
at least zero.
|
|
Unchanged on exit.
|
|
K - INTEGER.
|
|
On entry with TRANS = 'N' or 'n', K specifies the number
|
|
of columns of the matrices A and B, and on entry with
|
|
TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
|
|
of rows of the matrices A and B. K must be at least zero.
|
|
Unchanged on exit.
|
|
ALPHA - DOUBLE PRECISION.
|
|
On entry, ALPHA specifies the scalar alpha.
|
|
Unchanged on exit.
|
|
A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
|
|
k when TRANS = 'N' or 'n', and is n otherwise.
|
|
Before entry with TRANS = 'N' or 'n', the leading n by k
|
|
part of the array A must contain the matrix A, otherwise
|
|
the leading k by n part of the array A must contain the
|
|
matrix A.
|
|
Unchanged on exit.
|
|
LDA - INTEGER.
|
|
On entry, LDA specifies the first dimension of A as declared
|
|
in the calling (sub) program. When TRANS = 'N' or 'n'
|
|
then LDA must be at least max( 1, n ), otherwise LDA must
|
|
be at least max( 1, k ).
|
|
Unchanged on exit.
|
|
B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
|
|
k when TRANS = 'N' or 'n', and is n otherwise.
|
|
Before entry with TRANS = 'N' or 'n', the leading n by k
|
|
part of the array B must contain the matrix B, otherwise
|
|
the leading k by n part of the array B must contain the
|
|
matrix B.
|
|
Unchanged on exit.
|
|
LDB - INTEGER.
|
|
On entry, LDB specifies the first dimension of B as declared
|
|
in the calling (sub) program. When TRANS = 'N' or 'n'
|
|
then LDB must be at least max( 1, n ), otherwise LDB must
|
|
be at least max( 1, k ).
|
|
Unchanged on exit.
|
|
BETA - DOUBLE PRECISION.
|
|
On entry, BETA specifies the scalar beta.
|
|
Unchanged on exit.
|
|
C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
|
|
Before entry with UPLO = 'U' or 'u', the leading n by n
|
|
upper triangular part of the array C must contain the upper
|
|
triangular part of the symmetric matrix and the strictly
|
|
lower triangular part of C is not referenced. On exit, the
|
|
upper triangular part of the array C is overwritten by the
|
|
upper triangular part of the updated matrix.
|
|
Before entry with UPLO = 'L' or 'l', the leading n by n
|
|
lower triangular part of the array C must contain the lower
|
|
triangular part of the symmetric matrix and the strictly
|
|
upper triangular part of C is not referenced. On exit, the
|
|
lower triangular part of the array C is overwritten by the
|
|
lower triangular part of the updated matrix.
|
|
LDC - INTEGER.
|
|
On entry, LDC specifies the first dimension of C as declared
|
|
in the calling (sub) program. LDC must be at least
|
|
max( 1, n ).
|
|
Unchanged on exit.
|
|
Level 3 Blas routine.
|
|
-- Written on 8-February-1989.
|
|
Jack Dongarra, Argonne National Laboratory.
|
|
Iain Duff, AERE Harwell.
|
|
Jeremy Du Croz, Numerical Algorithms Group Ltd.
|
|
Sven Hammarling, Numerical Algorithms Group Ltd.
|
|
Test the input parameters.
|
|
Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1 * 1;
|
|
a -= a_offset;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1 * 1;
|
|
b -= b_offset;
|
|
c_dim1 = *ldc;
|
|
c_offset = 1 + c_dim1 * 1;
|
|
c__ -= c_offset;
|
|
/* Function Body */
|
|
if (hypre_lsame_(trans, "N")) {
|
|
nrowa = *n;
|
|
} else {
|
|
nrowa = *k;
|
|
}
|
|
upper = hypre_lsame_(uplo, "U");
|
|
info = 0;
|
|
if (! upper && ! hypre_lsame_(uplo, "L")) {
|
|
info = 1;
|
|
} else if (! hypre_lsame_(trans, "N") && ! hypre_lsame_(trans,
|
|
"T") && ! hypre_lsame_(trans, "C")) {
|
|
info = 2;
|
|
} else if (*n < 0) {
|
|
info = 3;
|
|
} else if (*k < 0) {
|
|
info = 4;
|
|
} else if (*lda < max(1,nrowa)) {
|
|
info = 7;
|
|
} else if (*ldb < max(1,nrowa)) {
|
|
info = 9;
|
|
} else if (*ldc < max(1,*n)) {
|
|
info = 12;
|
|
}
|
|
if (info != 0) {
|
|
hypre_xerbla_("DSYR2K", &info);
|
|
return 0;
|
|
}
|
|
/* Quick return if possible. */
|
|
if (*n == 0 || ((*alpha == 0. || *k == 0) && (*beta == 1.))) {
|
|
return 0;
|
|
}
|
|
/* And when alpha.eq.zero. */
|
|
if (*alpha == 0.) {
|
|
if (upper) {
|
|
if (*beta == 0.) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c___ref(i__, j) = 0.;
|
|
/* L10: */
|
|
}
|
|
/* L20: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c___ref(i__, j) = *beta * c___ref(i__, j);
|
|
/* L30: */
|
|
}
|
|
/* L40: */
|
|
}
|
|
}
|
|
} else {
|
|
if (*beta == 0.) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
c___ref(i__, j) = 0.;
|
|
/* L50: */
|
|
}
|
|
/* L60: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
c___ref(i__, j) = *beta * c___ref(i__, j);
|
|
/* L70: */
|
|
}
|
|
/* L80: */
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
/* Start the operations. */
|
|
if (hypre_lsame_(trans, "N")) {
|
|
/* Form C := alpha*A*B' + alpha*B*A' + C. */
|
|
if (upper) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (*beta == 0.) {
|
|
i__2 = j;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c___ref(i__, j) = 0.;
|
|
/* L90: */
|
|
}
|
|
} else if (*beta != 1.) {
|
|
i__2 = j;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
c___ref(i__, j) = *beta * c___ref(i__, j);
|
|
/* L100: */
|
|
}
|
|
}
|
|
i__2 = *k;
|
|
for (l = 1; l <= i__2; ++l) {
|
|
if (a_ref(j, l) != 0. || b_ref(j, l) != 0.) {
|
|
temp1 = *alpha * b_ref(j, l);
|
|
temp2 = *alpha * a_ref(j, l);
|
|
i__3 = j;
|
|
for (i__ = 1; i__ <= i__3; ++i__) {
|
|
c___ref(i__, j) = c___ref(i__, j) + a_ref(i__, l)
|
|
* temp1 + b_ref(i__, l) * temp2;
|
|
/* L110: */
|
|
}
|
|
}
|
|
/* L120: */
|
|
}
|
|
/* L130: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (*beta == 0.) {
|
|
i__2 = *n;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
c___ref(i__, j) = 0.;
|
|
/* L140: */
|
|
}
|
|
} else if (*beta != 1.) {
|
|
i__2 = *n;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
c___ref(i__, j) = *beta * c___ref(i__, j);
|
|
/* L150: */
|
|
}
|
|
}
|
|
i__2 = *k;
|
|
for (l = 1; l <= i__2; ++l) {
|
|
if (a_ref(j, l) != 0. || b_ref(j, l) != 0.) {
|
|
temp1 = *alpha * b_ref(j, l);
|
|
temp2 = *alpha * a_ref(j, l);
|
|
i__3 = *n;
|
|
for (i__ = j; i__ <= i__3; ++i__) {
|
|
c___ref(i__, j) = c___ref(i__, j) + a_ref(i__, l)
|
|
* temp1 + b_ref(i__, l) * temp2;
|
|
/* L160: */
|
|
}
|
|
}
|
|
/* L170: */
|
|
}
|
|
/* L180: */
|
|
}
|
|
}
|
|
} else {
|
|
/* Form C := alpha*A'*B + alpha*B'*A + C. */
|
|
if (upper) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
temp1 = 0.;
|
|
temp2 = 0.;
|
|
i__3 = *k;
|
|
for (l = 1; l <= i__3; ++l) {
|
|
temp1 += a_ref(l, i__) * b_ref(l, j);
|
|
temp2 += b_ref(l, i__) * a_ref(l, j);
|
|
/* L190: */
|
|
}
|
|
if (*beta == 0.) {
|
|
c___ref(i__, j) = *alpha * temp1 + *alpha * temp2;
|
|
} else {
|
|
c___ref(i__, j) = *beta * c___ref(i__, j) + *alpha *
|
|
temp1 + *alpha * temp2;
|
|
}
|
|
/* L200: */
|
|
}
|
|
/* L210: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *n;
|
|
for (i__ = j; i__ <= i__2; ++i__) {
|
|
temp1 = 0.;
|
|
temp2 = 0.;
|
|
i__3 = *k;
|
|
for (l = 1; l <= i__3; ++l) {
|
|
temp1 += a_ref(l, i__) * b_ref(l, j);
|
|
temp2 += b_ref(l, i__) * a_ref(l, j);
|
|
/* L220: */
|
|
}
|
|
if (*beta == 0.) {
|
|
c___ref(i__, j) = *alpha * temp1 + *alpha * temp2;
|
|
} else {
|
|
c___ref(i__, j) = *beta * c___ref(i__, j) + *alpha *
|
|
temp1 + *alpha * temp2;
|
|
}
|
|
/* L230: */
|
|
}
|
|
/* L240: */
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
/* End of DSYR2K. */
|
|
} /* dsyr2k_ */
|
|
#undef c___ref
|
|
#undef b_ref
|
|
#undef a_ref
|
|
|