hypre/blas/dsyrk.c
falgout e3181f26b1 Added 64 bit feature using HYPRE_Int (see tracker [issue489] for details).
Changed MPI routines to hypre_MPI routines.
Added hypre_printf, etc. routines.
Added AUTOTEST tests to look for 'int' and 'MPI_' calls.
Added a new approach for the Fortran interface (not implemented everywhere yet).
2010-12-20 19:27:44 +00:00

356 lines
8.2 KiB
C

/* -- translated by f2c (version 19940927).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
#include "hypre_blas.h"
/* Subroutine */ HYPRE_Int dsyrk_(char *uplo, char *trans, integer *n, integer *k,
doublereal *alpha, doublereal *a, integer *lda, doublereal *beta,
doublereal *c, integer *ldc)
{
/* System generated locals */
/* Local variables */
static integer info;
static doublereal temp;
static integer i, j, l;
extern logical hypre_lsame_(char *, char *);
static integer nrowa;
static logical upper;
extern /* Subroutine */ HYPRE_Int hypre_xerbla_(char *, integer *);
/* Purpose
=======
DSYRK performs one of the symmetric rank k operations
C := alpha*A*A' + beta*C,
or
C := alpha*A'*A + beta*C,
where alpha and beta are scalars, C is an n by n symmetric matrix
and A is an n by k matrix in the first case and a k by n matrix
in the second case.
Parameters
==========
UPLO - CHARACTER*1.
On entry, UPLO specifies whether the upper or lower
triangular part of the array C is to be referenced as
follows:
UPLO = 'U' or 'u' Only the upper triangular part of C
is to be referenced.
UPLO = 'L' or 'l' Only the lower triangular part of C
is to be referenced.
Unchanged on exit.
TRANS - CHARACTER*1.
On entry, TRANS specifies the operation to be performed as
follows:
TRANS = 'N' or 'n' C := alpha*A*A' + beta*C.
TRANS = 'T' or 't' C := alpha*A'*A + beta*C.
TRANS = 'C' or 'c' C := alpha*A'*A + beta*C.
Unchanged on exit.
N - INTEGER.
On entry, N specifies the order of the matrix C. N must be
at least zero.
Unchanged on exit.
K - INTEGER.
On entry with TRANS = 'N' or 'n', K specifies the number
of columns of the matrix A, and on entry with
TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
of rows of the matrix A. K must be at least zero.
Unchanged on exit.
ALPHA - DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
k when TRANS = 'N' or 'n', and is n otherwise.
Before entry with TRANS = 'N' or 'n', the leading n by k
part of the array A must contain the matrix A, otherwise
the leading k by n part of the array A must contain the
matrix A.
Unchanged on exit.
LDA - INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When TRANS = 'N' or 'n'
then LDA must be at least max( 1, n ), otherwise LDA must
be at least max( 1, k ).
Unchanged on exit.
BETA - DOUBLE PRECISION.
On entry, BETA specifies the scalar beta.
Unchanged on exit.
C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
Before entry with UPLO = 'U' or 'u', the leading n by n
upper triangular part of the array C must contain the upper
triangular part of the symmetric matrix and the strictly
lower triangular part of C is not referenced. On exit, the
upper triangular part of the array C is overwritten by the
upper triangular part of the updated matrix.
Before entry with UPLO = 'L' or 'l', the leading n by n
lower triangular part of the array C must contain the lower
triangular part of the symmetric matrix and the strictly
upper triangular part of C is not referenced. On exit, the
lower triangular part of the array C is overwritten by the
lower triangular part of the updated matrix.
LDC - INTEGER.
On entry, LDC specifies the first dimension of C as declared
in the calling (sub) program. LDC must be at least
max( 1, n ).
Unchanged on exit.
Level 3 Blas routine.
-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.
Test the input parameters.
Parameter adjustments
Function Body */
#define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]
#define C(I,J) c[(I)-1 + ((J)-1)* ( *ldc)]
if (hypre_lsame_(trans, "N")) {
nrowa = *n;
} else {
nrowa = *k;
}
upper = hypre_lsame_(uplo, "U");
info = 0;
if (! upper && ! hypre_lsame_(uplo, "L")) {
info = 1;
} else if (! hypre_lsame_(trans, "N") && ! hypre_lsame_(trans, "T") &&
! hypre_lsame_(trans, "C")) {
info = 2;
} else if (*n < 0) {
info = 3;
} else if (*k < 0) {
info = 4;
} else if (*lda < max(1,nrowa)) {
info = 7;
} else if (*ldc < max(1,*n)) {
info = 10;
}
if (info != 0) {
hypre_xerbla_("DSYRK ", &info);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || ((*alpha == 0. || *k == 0) && (*beta == 1.))) {
return 0;
}
/* And when alpha.eq.zero. */
if (*alpha == 0.) {
if (upper) {
if (*beta == 0.) {
for (j = 1; j <= *n; ++j) {
for (i = 1; i <= j; ++i) {
C(i,j) = 0.;
/* L10: */
}
/* L20: */
}
} else {
for (j = 1; j <= *n; ++j) {
for (i = 1; i <= j; ++i) {
C(i,j) = *beta * C(i,j);
/* L30: */
}
/* L40: */
}
}
} else {
if (*beta == 0.) {
for (j = 1; j <= *n; ++j) {
for (i = j; i <= *n; ++i) {
C(i,j) = 0.;
/* L50: */
}
/* L60: */
}
} else {
for (j = 1; j <= *n; ++j) {
for (i = j; i <= *n; ++i) {
C(i,j) = *beta * C(i,j);
/* L70: */
}
/* L80: */
}
}
}
return 0;
}
/* Start the operations. */
if (hypre_lsame_(trans, "N")) {
/* Form C := alpha*A*A' + beta*C. */
if (upper) {
for (j = 1; j <= *n; ++j) {
if (*beta == 0.) {
for (i = 1; i <= j; ++i) {
C(i,j) = 0.;
/* L90: */
}
} else if (*beta != 1.) {
for (i = 1; i <= j; ++i) {
C(i,j) = *beta * C(i,j);
/* L100: */
}
}
for (l = 1; l <= *k; ++l) {
if (A(j,l) != 0.) {
temp = *alpha * A(j,l);
for (i = 1; i <= j; ++i) {
C(i,j) += temp * A(i,l);
/* L110: */
}
}
/* L120: */
}
/* L130: */
}
} else {
for (j = 1; j <= *n; ++j) {
if (*beta == 0.) {
for (i = j; i <= *n; ++i) {
C(i,j) = 0.;
/* L140: */
}
} else if (*beta != 1.) {
for (i = j; i <= *n; ++i) {
C(i,j) = *beta * C(i,j);
/* L150: */
}
}
for (l = 1; l <= *k; ++l) {
if (A(j,l) != 0.) {
temp = *alpha * A(j,l);
for (i = j; i <= *n; ++i) {
C(i,j) += temp * A(i,l);
/* L160: */
}
}
/* L170: */
}
/* L180: */
}
}
} else {
/* Form C := alpha*A'*A + beta*C. */
if (upper) {
for (j = 1; j <= *n; ++j) {
for (i = 1; i <= j; ++i) {
temp = 0.;
for (l = 1; l <= *k; ++l) {
temp += A(l,i) * A(l,j);
/* L190: */
}
if (*beta == 0.) {
C(i,j) = *alpha * temp;
} else {
C(i,j) = *alpha * temp + *beta * C(i,j);
}
/* L200: */
}
/* L210: */
}
} else {
for (j = 1; j <= *n; ++j) {
for (i = j; i <= *n; ++i) {
temp = 0.;
for (l = 1; l <= *k; ++l) {
temp += A(l,i) * A(l,j);
/* L220: */
}
if (*beta == 0.) {
C(i,j) = *alpha * temp;
} else {
C(i,j) = *alpha * temp + *beta * C(i,j);
}
/* L230: */
}
/* L240: */
}
}
}
return 0;
/* End of DSYRK . */
} /* dsyrk_ */